Parcial I — Calculo 1

Sergio Cruz y Ana Primo

Ejercicio 1 (5 ptos) Indica si son verdaderas o falsas las siguientes afirmaciones, escribiendo una
demostracién si es verdadera o dando un contraejemplo si es falsa.

a) (1 pto) Existe una sucesién {ap nen — +00 que admite una subsucesién parcial decreciente.

b) (1 pto) Toda sucesién de Cauchy de ntimeros racionales es convergente en Q.

1
¢) (1 pto) Si una sucesion {ay, }nen cumple |a, — an—1| < o Vn > 2, entonces es de Cauchy.

n+2

d) (1 pto) La siguiente serie es convergente pero no absolutamente convergente: -, (—1)n+t T

e) (1 pto) Si >_,>1 T, es una serie convergente, entonces ), T2, también es convergente.

SOLUCION:

a) Falso. Supongamos que existe una sucesién parcial {a,(,) } decreciente. Sabemos que entonces
(n)
{@s(n)} — +o0 también, lo que nos da un m € N de forma que a,(,) > a,(1) para n > m, lo
que contradice que sea decreciente.

107v/2
(b) Falso. Sea por ejemplo z, = % para todo n € N (las aproximaciones decimales

sucesivas de v/2). Se tiene que z,, € Q para todon € Ny {z,} — V2 en R.

Por el teorema de completitud de R, {x,} es de Cauchy en R, pero este hecho no depende
del valor de su limite, por lo que {x,} también es de Cauchy en Q, pero no es convergente
en Q, ya que eso contradiria la unicidad del limite.

(c) Verdadero. Sean p,q € N, y supongamos por comodidad que ¢ > p. Entonces, usando la
desigualdad triangular y la hipoétesis del enunciado, se tiene:

q

lag — ap| = lag —ag1+ a1 —ag2+ag2— ... +ap1 — | < Z |an — an—1
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Sea ¢ > 0. Como {2%}”@\1 — 0, podemos encontrar m € N tal que, para todo n > m se tiene
2% < e. Consecuentemente, para p,q € N, p,q > m se tiene

’aq_ap| S 27p <§g,
lo que demuestra que es de Cauchy.

Alternativamente, podemos recordar que toda sucesion puede escribirse como una serie
telescopica sin méas que escribir ag =0y

{an} = Z(ak —ap-1)-

n>1

La hipétesis nos dice que la serie Y, ~; |ax — ax—1| es convergente por el criterio de compa-
raciéon con »_,~; 1/2". Por tanto, la serie >, <, ar — ar—1 es absolutamente convergente, y
por tanto convergente. Esto nos dice que {a,} es convergente y por tanto de Cauchy.




(d) Verdadero. Llamemos a,, = #‘fﬂ para todo n € N. Claramente a,, > 0 para todo n € N
y {an} — 0. Por un lado
an, n?+2n
T 2in11 0
- n*+n+1
luego la convergencia de }_,~; a, equivale a la de 3~ % por el criterio de comparacion.
Como la serie armoénica no es convergente, tampoco converge absolutamente nuestra serie.

En cambio, podemos ver que si es convergente por el criterio de Leibniz, ya que a, es
decreciente:

n+3 o N +2
n?+3n+3 " n’+n+1

an+1 < ap <= <:>0§n2+5n+3.

(e) Falso. La serie del apartado anterior proporciona un contraejemplo. También puede consi-

- _ (=" .
derarse la armonica alternada x, = *—— para n € N. La serie }_, >, T, es convergente por
el criterio de Leibniz pero

D o =

n>1 n>1

1

2n

no lo es.

Ejercicio 2 (2,5 ptos) Se considera la sucesion {a, }nen definida por recurrencia mediante

{an+1=2—;+@,

01:2.

a) (1,5 ptos) Demostrar que la sucesién es monétona creciente y estd acotada superiormente por 5.

b) (1 pto) Justificar que la sucesién es convergente y calcular su limite.

SOLUCION:

a) Probamos en primer lugar que a,, < 5 para todo n € N. Lo hacemos por induccién sobre n:
para n = 1 tenemos claramente a; = 2 < 5. Ahora, supuesto cierto para algin n € N, se ve
sin dificultad que

1
np1 <2—=4V5<2+5 <5,
n

Veamos ahora que a,, es creciente (a, > a,—1), también por induccién. Para n = 2 tenemos
as =1+ /2 > 2 = ay. Si suponemos que la hipétesis es cierta para algtin n € N, entonces

1

n —

1 1
= a0 = 2= %+ = (2= I VA = o VYT 20

donde hemos usado al final que \/x > |/y para todo >y > 0.

b) La sucesién {a,} es creciente y mayorada, luego es convergente. De hecho, {z,} — L = sup zy,.
Para determinar L, observamos que {a,11} es una subsucesién de {a,}, por lo que debe
tenerse también {a,+1} — L. Entonces, tomando limite en la definicién

L=24+VL = (L-2%=L = Le{l,4.
No puede tenerse L = 1 porque a, > a1 = 2 para todo n € N, luego L = 4.

Ejercicio 3. (2,5 ptos) Sean r > 0 un pardametro real fijo, y Y. a, la serie de término general:
n>1

™ (n!)?

7(2n+1)!’ n € N.

ap —

2



(a)
(b)

(1 pto) Demostrar que Ef:,l))gl < 4™ para todo n € N.

(1.5 ptos) Estudiar la convergencia de la serie Y a, en funcién del pardmetro r.
n>1

SOLUCION:

2)

Lo hacemos por induccién sobre n. Para n = 1 tenemos 2 = 2 < 41 = 4. Suponiendo que es

1
cierto para algin n € N, para n + 1 se tiene

< 4TL+1.

2n+2)!  2n)!2n+2)2n+1)  (2n)! 4n®2 +6n+3 <4n< 2n +1 )

(n+1N2 )2+ 12 )2 n2+2n+1 — 242+ 1

Si r = 0, entonces a, = 0 para todo n € N y la serie es trivialmente convergente. Sea
entonces r > 0. Como a, > 0 para todo n € N, podemos intentar aplicar el criterio del

cociente:
Unt1 r"t((n+ 1% (2n+1)! B (n+1)2 r

= — —.
an @n+3)!  mm)2 | @Cnid)@nt2) 4
Por el criterio del cociente, la serie converge si 0 < r < 4 y diverge a 400 si r > 4. Para
r = 4, el criterio no decide, pero podemos usar el apartado (a) para ver que
(nh)2 4» S 1
@2n)! 2n+1 "~ 2n+1

ap —

1

Como la serie 3>y 507

diverge, también lo hace }_, <, a, por comparacion.



