
Parcial I — Cálculo I
Sergio Cruz y Ana Primo

Ejercicio 1 (5 ptos) Indica si son verdaderas o falsas las siguientes afirmaciones, escribiendo una
demostración si es verdadera o dando un contraejemplo si es falsa.

a) (1 pto) Existe una sucesión {an}n∈N → +∞ que admite una subsucesión parcial decreciente.

b) (1 pto) Toda sucesión de Cauchy de números racionales es convergente en Q.

c) (1 pto) Si una sucesión {an}n∈N cumple |an − an−1| ≤ 1
2n

∀n ≥ 2, entonces es de Cauchy.

d) (1 pto) La siguiente serie es convergente pero no absolutamente convergente:
∑

n≥1(−1)n+1 n+2
n2+n+1 .

e) (1 pto) Si
∑

n≥1 xn es una serie convergente, entonces
∑

n≥1 x2n también es convergente.

SOLUCIÓN:

(a) Falso. Supongamos que existe una sucesión parcial {aσ(n)} decreciente. Sabemos que entonces
{aσ(n)} → +∞ también, lo que nos da un m ∈ N de forma que aσ(n) > aσ(1) para n ≥ m, lo
que contradice que sea decreciente.

(b) Falso. Sea por ejemplo xn = ⌊10n
√

2⌋
10n para todo n ∈ N (las aproximaciones decimales

sucesivas de
√

2). Se tiene que xn ∈ Q para todo n ∈ N y {xn} →
√

2 en R.

Por el teorema de completitud de R, {xn} es de Cauchy en R, pero este hecho no depende
del valor de su límite, por lo que {xn} también es de Cauchy en Q, pero no es convergente
en Q, ya que eso contradiría la unicidad del límite.

(c) Verdadero. Sean p, q ∈ N, y supongamos por comodidad que q > p. Entonces, usando la
desigualdad triangular y la hipótesis del enunciado, se tiene:

|aq − ap| = |aq − aq−1 + aq−1 − aq−2 + aq−2 − . . . + ap+1 − ap| ≤
q∑

n=p+1
|an − an−1|

≤
q∑

n=p+1

1
2n

=
q∑

n=0

1
2n

−
p∑

n=0

1
2n

=
1 −

(
1
2

)q+1

1 − 1
2

−
1 −

(
1
2

)p+1

1 − 1
2

= 1
2p

− 1
2q

≤ 1
2p

.

Sea ε > 0. Como { 1
2n }n∈N → 0, podemos encontrar m ∈ N tal que, para todo n ≥ m se tiene

1
2n < ε. Consecuentemente, para p, q ∈ N, p, q ≥ m se tiene

|aq − ap| ≤ 1
2p

< ε,

lo que demuestra que es de Cauchy.

Alternativamente, podemos recordar que toda sucesión puede escribirse como una serie
telescópica sin más que escribir a0 = 0 y

{an} =
∑
n≥1

(ak − ak−1).

La hipótesis nos dice que la serie
∑

n≥1 |ak − ak−1| es convergente por el criterio de compa-
ración con

∑
n≥1 1/2n. Por tanto, la serie

∑
n≥1 ak − ak−1 es absolutamente convergente, y

por tanto convergente. Esto nos dice que {an} es convergente y por tanto de Cauchy.
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(d) Verdadero. Llamemos an = n+2
n2+n+1 para todo n ∈ N. Claramente an ≥ 0 para todo n ∈ N

y {an} → 0. Por un lado
an
1
n

= n2 + 2n

n2 + n + 1 → 1,

luego la convergencia de
∑

n≥1 an equivale a la de
∑

n≥1
1
n por el criterio de comparación.

Como la serie armónica no es convergente, tampoco converge absolutamente nuestra serie.

En cambio, podemos ver que sí es convergente por el criterio de Leibniz, ya que an es
decreciente:

an+1 ≤ an ⇐⇒ n + 3
n2 + 3n + 3 ≤ n + 2

n2 + n + 1 ⇐⇒ 0 ≤ n2 + 5n + 3.

(e) Falso. La serie del apartado anterior proporciona un contraejemplo. También puede consi-
derarse la armónica alternada xn = (−1)n

n para n ∈ N. La serie
∑

n≥1 xn es convergente por
el criterio de Leibniz pero ∑

n≥1
x2n =

∑
n≥1

1
2n

no lo es.

Ejercicio 2 (2,5 ptos) Se considera la sucesión {an}n∈N definida por recurrencia mediante{
an+1 = 2 − 1

n + √
an,

a1 = 2.

a) (1,5 ptos) Demostrar que la sucesión es monótona creciente y está acotada superiormente por 5.
b) (1 pto) Justificar que la sucesión es convergente y calcular su límite.

SOLUCIÓN:
a) Probamos en primer lugar que an ≤ 5 para todo n ∈ N. Lo hacemos por inducción sobre n:

para n = 1 tenemos claramente a1 = 2 < 5. Ahora, supuesto cierto para algún n ∈ N, se ve
sin dificultad que

an+1 ≤ 2 − 1
n

+
√

5 ≤ 2 +
√

5 < 5.

Veamos ahora que an es creciente (an ≥ an−1), también por inducción. Para n = 2 tenemos
a2 = 1 +

√
2 > 2 = a1. Si suponemos que la hipótesis es cierta para algún n ∈ N, entonces

an+1 − an = 2 − 1
n

+
√

an −
(

2 − 1
n − 1 + √

an−1

)
= 1

n(n − 1) +
√

an − √
an−1 ≥ 0,

donde hemos usado al final que
√

x ≥ √
y para todo x ≥ y ≥ 0.

b) La sucesión {an} es creciente y mayorada, luego es convergente. De hecho, {xn} → L = sup xn.
Para determinar L, observamos que {an+1} es una subsucesión de {an}, por lo que debe
tenerse también {an+1} → L. Entonces, tomando límite en la definición

L = 2 +
√

L ⇒ (L − 2)2 = L ⇒ L ∈ {1, 4}.

No puede tenerse L = 1 porque an > a1 = 2 para todo n ∈ N, luego L = 4.

Ejercicio 3. (2,5 ptos) Sean r ≥ 0 un parámetro real fijo, y
∑

n≥1
an la serie de término general:

an = rn (n!)2

(2n + 1)! , n ∈ N.
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(a) (1 pto) Demostrar que (2n)!
(n!)2 ≤ 4n, para todo n ∈ N.

(b) (1.5 ptos) Estudiar la convergencia de la serie
∑

n≥1
an en función del parámetro r.

SOLUCIÓN:

a) Lo hacemos por inducción sobre n. Para n = 1 tenemos 2!
12 = 2 ≤ 41 = 4. Suponiendo que es

cierto para algún n ∈ N, para n + 1 se tiene

(2n + 2)!
((n + 1)!)2 = (2n)!(2n + 2)(2n + 1)

(n!)2(n + 1)2 = (2n)!
(n!)2

4n2 + 6n + 3
n2 + 2n + 1 ≤ 4n

(
4 − 2n + 1

n2 + 2n + 1

)
≤ 4n+1.

b) Si r = 0, entonces an = 0 para todo n ∈ N y la serie es trivialmente convergente. Sea
entonces r > 0. Como an > 0 para todo n ∈ N, podemos intentar aplicar el criterio del
cociente:

an+1
an

= rn+1((n + 1)!)2

(2n + 3)!
(2n + 1)!
rn(n!)2 = r

(n + 1)2

(2n + 3)(2n + 2) −→ r

4 .

Por el criterio del cociente, la serie converge si 0 < r < 4 y diverge a +∞ si r > 4. Para
r = 4, el criterio no decide, pero podemos usar el apartado (a) para ver que

an = (n!)2

(2n)!
4n

2n + 1 ≥ 1
2n + 1 .

Como la serie
∑

n≥1
1

2n+1 diverge, también lo hace
∑

n≥1 an por comparación.
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