Examen final ordinario: 19 de enero, 2026

CALcuLO I: GRADO EN MATEMATICAS Y DOBLE GRADO MAT/ING. INFORMATICA
SOLUCIONES:

1. (i)

(ii)

(iii)

Sea A un conjunto no vacio de nimeros reales acotado inferiormente. Llamemos ay = inf A y
supongamos que ay > 0. Se define el conjunto

B:{l:xeA}.
x

b . 1
Demuestra que B estd acotado superiormente y que sup B = a0

SOL.: Verdadero. Sea b, = % Queremos ver primero que by es una cota superior de B. Para

ello, dado y € B observamos que 3z € A tal que y = L. Como 0 < a¢ < = V), deducimos
quey = 1< % = by, es decir y < by como queremos. (

A

De acuerdo con la definicidn, nos falta ver que si b < by entonces b no puede ser cota superior
de B. Podemos suponer que b > 0 porque en caso contrario ya habriamos terminado. Como
ahora se tiene ag = % < % deducimos que % no es una cota inferior de A (porque aq es la
mds grande de todas ellas). Por tanto, 3z € A tal que = < 1 De esta forma, si llamamos

b
Yy = % tenemos que y € B y ademas y = % > %/b = b. Luego b no es cota superior de B como
queriamos probar.

Sea {x,,} una sucesién de niimeros positivos no acotada superiormente. Entonces {--} — 0.

SOL.: Falso. Sea por ejemplo

%:{nSnﬁmmn:ﬂﬂﬁ¢&Lﬁm}
1 sin es par.

La sucesién {z,,} no estd mayorada pero {i} = {1} — 1, luego no puede ser convergente
a cero.

Sea f : R — R una funcién continua con lim, . f(z) = lim,_,_, f(x) = 0. Entonces f
estad acotada.

SOL.: Verdadero. Por definicién de limite, para ¢ = 1 existe K > 0 tal que si |z| > K
entonces |f(z)] < 1. En [-K, K], el Teorema de Weierstrass nos dice que f alcanza un
maximo absoluto, al que llamamos M € R. Entonces

|f(z)] < méx{1, M}.

Sea I un intervalo no trivial y f una funcién dos veces derivable con f'(x) # 0 para todo
x € I. Entonces f~! es céncava.

SOL.: Falso. La funcién x — 1/x es convexa, es su propia inversa y es derivable en R™ con
derivada distinta de cero.

iComo darse cuenta? Derivando una vez la férmula de la derivada de la funcién inversa
tenemos

Y (@) = S Y () () = %g)
—1\n . _f”(‘%)
= ) =

! Obsérvese que todos los elementos de A (y por tanto también los de B) son positivos
2 Las tnica propiedad que usaremos en este ejercicio sobre la relacién de orden entre los ndmeros reales es que

. 1 1
si0)<u<wentonces 0 < — < —.
voou



3.

Por tanto, si f es estrictamente decreciente, f~! tiene la misma curvatura que f. En cambio,
si f es estrictamente creciente, f~! tiene la curvatura opuesta. Esto también sirve como
justificacion.
Sea f: R — R una funcién par derivable en x = 0. Entonces f'(0) = 0.
SOL.: Verdadero. Se tiene

x)— f(0 —x) — f(0

z—0 X z—0 —T x—0 T

Por tanto f'(0) = 0.

. Sea f :(0,1) — (0,1) una funcién continua que satisface f(z) > z para todo z en (0, 1).

Definimos la sucesién por recurrencia

Tnt1 = f(zn), paran > 1,

y donde el valor inicial z; es un niimero arbitrario en (0, 1). Demuestra que la sucesién (x,,)n>1
tiene limite y calcdlalo.

SOL.: Por las propiedades de la funcién, 0 < f(x) < 1y z < f(x), se sigue que
Ty < f(zn) = Tpyr < 1.

Luego la sucesidn es creciente y acotada. Por la teoria vista en clase, la sucesidn tiene limite
L que verifica

L = lim x, = sup{zy, 2o, ..., 2%, ... }, 0<L <1,
n—oo
lo dltimo debido a que 1 es una cota superior del conjunto {x1, s, ..., zy, ... }. Ahora tenemos

dos posibilidades:
L < 1: en este caso L pertenece al dominio de la funcién vy, al ser continua, se debe cumplir

f(L)=lim f(z,) = lim 2,41 = L.
n—oo

n—oo

Es decir, f(L) = L, lo cual es absurdo por las hipétesis sobre f.
Luego la Unica opcién posible es que L = 1.

Sea F': R — R la funcién dada por
3 sint .
F(z) = TR dt VzeR*, F(0)=log3.

(i) Probar que F' tiene simetria par.

(ii) Calcular el polinomio de Taylor de orden 3 de la funcién seno centrado en 0, y demostrar
que para cada x € [0, ] se tiene

z3 ,
x—ggsmxgx.

(iii) Concluir que F' es continua en z = 0.
(iv) Justificar que F' es derivable en R con F'(0) = 0.
(v) Demostrar que F' es Lipschitziana.

)

(vi) Sea I = [—m, 7. Estudiar la monotonia y calcular los extremos relativos y absolutos de
F en I. Determinar F(I).



Sugerencia: Las siguiente fomula puede ser de utilidad
sin3z = 3sinz — 4sin®z, Va € R.

SOL.:

(i) Hacemos el cambio de variable —t = s en la integral.

F(—x):/_?m%dt:/:m Sii;j)(—mds:/:z S s = F(a).

T

(ii) Un sencillo calculo nos da que

w

3 gin®)©)
Ts[sin, 0)(z) = Z smk‘ =1 — %
k=0 ’

Usando ahora la férmula de Taylor, obtenemos puntos indeterminados ¢, d € [0, 7] tales

que
sing o= S0 (C)x2 _ —sine , <0,
2! 2!
, > sin®(d) , sind ,
smx—x+€:Ta:: 4!:15 > 0.

(iii) Sean z > 0 y t € [z,3z]. Integrando la desigualdad anterior para ¢ obtenemos, por la
monotonia de la integral:

3z 1 t 311 31)2 .ZU2
S Nat<F@ < [ cat log3 — — + = < F(z) < log 3.
/x <t 6> < (:c)_/x cdt = log T T S Fla) <log

Por el criterio del sandwich y la simetria par de la funcién F;

lim F(z) =log3 = lim F(x).

z—0t z—0—

Por tanto, F' es continua en z = (.

(iv) f es una funcién continua en R, luego admite una primitiva g, que es derivable por el
Teorema fundamental del célculo. Por la regla de Barrow, F'(z) = ¢g(3z) — g(z), luego F
es derivable. Un razonamiento andlogo nos da la derivabilidad de ' en R™. Ademas,

Fl(w) = 3f(32) — fla) = 3sindr  sinx _ sin 3xr — 3sinx _ —4sin® x a2 0.

92 2 32 32

Como F es continua en z = 0, el Teorema del valor medio nos permite calcular

—4sin® x —4 sinz\?®
/ — i —_— = —_— i -
F(O)—ili% 3 a2 3 :lvli%x( ) 0

Por tanto F' es derivable en todo R.

(v) Hemos visto que F' es derivable, luego sera Lipschitziana si y solo si F’ estd acotada en
R. Si |z| > 1, se tiene

|F'(2)] <

L W~

Para x € [—1,1], al ser |F’| una funcién continua, el Teorema de Weierstrass nos da un
maximo absoluto en dicho intervalo. Por tanto, F” estd acotada en R y F' es Lipschitziana.



(vi) Como F tiene simetria par, F” tendrd simetria impar, por lo que basta con restringirnos

a [0, 7]. Usando la expresién de la derivada calculada en los apartados anteriores es facil
ver que

F'(z) <0 Vax e (0,m).

Por tanto, F' es creciente en [—, 0] y decreciente en [0, 7] por el Teorema del valor medio.
Por tanto, en x = 0 hay un maximo relativo que también es absoluto.

Los puntos de minimo absoluto, que existen por el Teorema de Weierstrass, estdn en
r = —m y x = 7. Combinando todo lo anterior tenemos que F[—m, 7| = [—F (), log 3].

4 Estudiar la convergencia de la siguiente serie y de la integral impropia:

dz.

= (2n)! /°°
(0,75 ptos) Z WD) (0,75 ptos) S

" (

n=1

SOL.:

i) La siguiente serie es divergente:

= (2n)!
; n*(n+ 1)1

Basta con aplicar el criterio del cociente y ver que

. 4
lfm 2 — 2o,

n—o0 Ay e

* 1
/ dx.
; et —1

Buscamos una primitiva del integrando haciendo el cambio de variables y = e* — 1
0, lo que es lo mismo, z =In(y + 1) y dx = y—ildy. De esta forma

1 1 1 1 e —1
dr = | ——dy = - Jdy=1Iny—1 1) =1 .
/ex—l ’ /y(y+1) Y /(y y+1) y=ny—in{y+1) n( e’ )

Utilizando la definicidn de integral impropia se tiene

S | L | R_1q -1
/ dz = lim de = lfm In [ & —m (S
et —1 R—oo [, €* —1 R—00 el e

e e
= lim In(1—e¢%) +1 =1
Rl_rgon( e )+n(€_1) n(e_1>

= 1—1In(e—1).

Alternativamente, como ﬁ es positiva en (1,400), podemos compararla con la funcién

xr — e ¥ en 400, que es donde la integral se vuelve impropia. Vemos que
1/(e* —1 e’
lim M = lim =1,

z—too  1/e® z—+oo ¥ — 1

luego el cardcter de ambas integrales es equivalente. Vemos sin problema que

+o0 1
/ e tdr = [—e "] =~
1

(&

4



luego la integral considerada converge.

Alternativamente, como 811_1 es decreciente y el intervalo de integracién es no acotado,

podemos usar el criterio de la integral para series para concluir que la convergencia de la
integral es equivalente a la de la serie

1
2 a1

n>1

Dicha serie converge de forma manifiesta por el criterio del cociente, por ejemplo, ya que es
de términos positivos y

1/(em+ — 1 L
T A i) P SN )
n—too 1/(e" —1) notoce-e”—1 e



