
Examen final ordinario: 19 de enero, 2026

Cálculo I: Grado en Matemáticas y doble grado Mat/Ing. Informática

SOLUCIONES:

1. (i) Sea A un conjunto no vaćıo de números reales acotado inferiormente. Llamemos a0 = ı́nf A y
supongamos que a0 > 0. Se define el conjunto

B =

{
1

x
: x ∈ A

}
.

Demuestra que B está acotado superiormente y que supB = 1
a0
.

SOL.: Verdadero. Sea b0 =
1
a0
. Queremos ver primero que b0 es una cota superior de B. Para

ello, dado y ∈ B observamos que ∃x ∈ A tal que y = 1
x
. Como 0 < a0 ≤ x (1), deducimos

que y = 1
x
≤ 1

a0
= b0, es decir y ≤ b0 como queremos. (2)

De acuerdo con la definición, nos falta ver que si b < b0 entonces b no puede ser cota superior
de B. Podemos suponer que b > 0 porque en caso contrario ya habŕıamos terminado. Como
ahora se tiene a0 = 1

b0
< 1

b
, deducimos que 1

b
no es una cota inferior de A (porque a0 es la

más grande de todas ellas). Por tanto, ∃x ∈ A tal que x < 1
b
. De esta forma, si llamamos

y = 1
x
tenemos que y ∈ B y además y = 1

x
> 1

1/b
= b. Luego b no es cota superior de B como

queŕıamos probar.

(ii) Sea {xn} una sucesión de números positivos no acotada superiormente. Entonces { 1
xn
} → 0.

SOL.: Falso. Sea por ejemplo

xn =

{
n si n es impar,
1 si n es par.

= {1, 1, 3, 1, 5, 1, 7, . . .}.

La sucesión {xn} no está mayorada pero { 1
x2n

} = {1} → 1, luego no puede ser convergente
a cero.

(iii) Sea f : R → R una función continua con ĺımx→+∞ f(x) = ĺımx→−∞ f(x) = 0. Entonces f
está acotada.

SOL.: Verdadero. Por definición de ĺımite, para ε = 1 existe K > 0 tal que si |x| > K
entonces |f(x)| < 1. En [−K,K], el Teorema de Weierstrass nos dice que f alcanza un
máximo absoluto, al que llamamos M ∈ R. Entonces

|f(x)| ≤ máx{1,M}.

(iv) Sea I un intervalo no trivial y f una función dos veces derivable con f ′(x) ̸= 0 para todo
x ∈ I. Entonces f−1 es cóncava.

SOL.: Falso. La función x 7→ 1/x es convexa, es su propia inversa y es derivable en R+ con
derivada distinta de cero.

¿Cómo darse cuenta? Derivando una vez la fórmula de la derivada de la función inversa
tenemos

(f−1)′(f(x)) =
1

f ′(x)
⇒ (f−1)′′(f(x))f ′(x) =

−f ′′(x)

f ′(x)2

⇒ (f−1)′′(f(x)) =
−f ′′(x)

f ′(x)3
.

1 Obsérvese que todos los elementos de A (y por tanto también los de B) son positivos
2 Las única propiedad que usaremos en este ejercicio sobre la relación de orden entre los números reales es que

si 0 < u < v entonces 0 <
1

v
<

1

u
.
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Por tanto, si f es estrictamente decreciente, f−1 tiene la misma curvatura que f . En cambio,
si f es estrictamente creciente, f−1 tiene la curvatura opuesta. Esto también sirve como
justificación.

(v) Sea f : R → R una función par derivable en x = 0. Entonces f ′(0) = 0.

SOL.: Verdadero. Se tiene

f ′(0) = ĺım
x→0

f(x)− f(0)

x
= ĺım

x→0

f(−x)− f(0)

−x
= − ĺım

x→0

f(x)− f(0)

x
= −f ′(0).

Por tanto f ′(0) = 0.

2. Sea f : (0, 1) → (0, 1) una función continua que satisface f(x) > x para todo x en (0, 1).
Definimos la sucesión por recurrencia

xn+1 = f(xn), para n ≥ 1,

y donde el valor inicial x1 es un número arbitrario en (0, 1). Demuestra que la sucesión (xn)n≥1

tiene ĺımite y calcúlalo.

SOL.: Por las propiedades de la función, 0 < f(x) < 1 y x < f(x), se sigue que

xn < f(xn) = xn+1 < 1.

Luego la sucesión es creciente y acotada. Por la teoŕıa vista en clase, la sucesión tiene ĺımite
L que verifica

L = ĺım
n→∞

xn = sup{x1, x2, . . . , xk, . . . }, 0 < L ≤ 1,

lo último debido a que 1 es una cota superior del conjunto {x1, x2, . . . , xk, . . . }. Ahora tenemos
dos posibilidades:
L < 1: en este caso L pertenece al dominio de la función y, al ser continua, se debe cumplir

f(L) = ĺım
n→∞

f(xn) = ĺım
n→∞

xn+1 = L.

Es decir, f(L) = L, lo cual es absurdo por las hipótesis sobre f .
Luego la única opción posible es que L = 1.

3. Sea F : R → R la función dada por

F (x) =

∫ 3x

x

sin t

t2
dt ∀x ∈ R∗, F (0) = log 3.

(i) Probar que F tiene simetŕıa par.

(ii) Calcular el polinomio de Taylor de orden 3 de la función seno centrado en 0, y demostrar
que para cada x ∈ [0, π] se tiene

x− x3

6
≤ sinx ≤ x.

(iii) Concluir que F es continua en x = 0.

(iv) Justificar que F es derivable en R con F ′(0) = 0.

(v) Demostrar que F es Lipschitziana.

(vi) Sea I = [−π, π]. Estudiar la monotońıa y calcular los extremos relativos y absolutos de
F en I. Determinar F (I).
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Sugerencia: Las siguiente fómula puede ser de utilidad

sin 3x = 3 sinx− 4 sin3 x, ∀x ∈ R.

SOL.:

(i) Hacemos el cambio de variable −t = s en la integral.

F (−x) =

∫ −3x

−x

sin t

t2
dt =

∫ 3x

x

sin(−s)

(−s)2
(−1)ds =

∫ 3x

x

sin s

s2
ds = F (x).

(ii) Un sencillo cálculo nos da que

T3[sin, 0](x) =
3∑

k=0

sin(k)(0)

k!
xk = x− x3

6
.

Usando ahora la fórmula de Taylor, obtenemos puntos indeterminados c, d ∈ [0, π] tales
que

sin x− x =
sin(2)(c)

2!
x2 =

− sin c

2!
x2 ≤ 0,

sin x− x+
x3

6
=

sin(4)(d)

4!
x4 =

sin d

4!
x4 ≥ 0.

(iii) Sean x > 0 y t ∈ [x, 3x]. Integrando la desigualdad anterior para t obtenemos, por la
monotońıa de la integral:∫ 3x

x

(
1

t
− t

6

)
dt ≤ F (x) ≤

∫ 3x

x

1

t
dt ⇒ log 3− 3x2

4
+

x2

12
≤ F (x) ≤ log 3.

Por el criterio del sandwich y la simetŕıa par de la función F ;

ĺım
x→0+

F (x) = log 3 = ĺım
x→0−

F (x).

Por tanto, F es continua en x = 0.

(iv) f es una función continua en R+, luego admite una primitiva g, que es derivable por el
Teorema fundamental del cálculo. Por la regla de Barrow, F (x) = g(3x)− g(x), luego F
es derivable. Un razonamiento análogo nos da la derivabilidad de F en R−. Además,

F ′(x) = 3f(3x)− f(x) =
3 sin 3x

9x2
− sin x

x2
=

sin 3x− 3 sinx

3x2
=

−4 sin3 x

3x2
∀x ̸= 0.

Como F es continua en x = 0, el Teorema del valor medio nos permite calcular

F ′(0) = ĺım
x→0

−4

3

sin3 x

x2
=

−4

3
ĺım
x→0

x

(
sin x

x

)3

= 0.

Por tanto F es derivable en todo R.
(v) Hemos visto que F es derivable, luego será Lipschitziana si y solo si F ′ está acotada en

R. Si |x| > 1, se tiene

|F ′(x)| ≤ 4

3
.

Para x ∈ [−1, 1], al ser |F ′| una función continua, el Teorema de Weierstrass nos da un
máximo absoluto en dicho intervalo. Por tanto, F ′ está acotada en R y F es Lipschitziana.
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(vi) Como F tiene simetŕıa par, F ′ tendrá simetŕıa impar, por lo que basta con restringirnos
a [0, π]. Usando la expresión de la derivada calculada en los apartados anteriores es fácil
ver que

F ′(x) < 0 ∀x ∈ (0, π).

Por tanto, F es creciente en [−π, 0] y decreciente en [0, π] por el Teorema del valor medio.
Por tanto, en x = 0 hay un máximo relativo que también es absoluto.

Los puntos de ḿınimo absoluto, que existen por el Teorema de Weierstrass, están en
x = −π y x = π. Combinando todo lo anterior tenemos que F [−π, π] = [−F (π), log 3].

4 Estudiar la convergencia de la siguiente serie y de la integral impropia:

(0,75 ptos)
∞∑
n=1

(2n)!

nn (n+ 1)!
(0,75 ptos)

∫ ∞

1

1

ex − 1
dx.

SOL.:

i) La siguiente serie es divergente:
∞∑
n=1

(2n)!

nn(n+ 1)!
.

Basta con aplicar el criterio del cociente y ver que

ĺım
n→∞

an+1

an
=

4

e
> 1.

ii) ∫ ∞

1

1

ex − 1
dx.

Buscamos una primitiva del integrando haciendo el cambio de variables y = ex − 1
o, lo que es lo mismo, x = ln(y + 1) y dx = 1

y+1
dy. De esta forma∫

1

ex − 1
dx =

∫
1

y(y + 1)
dy =

∫ (
1

y
− 1

y + 1

)
dy = ln y − ln(y + 1) = ln

(
ex − 1

ex

)
.

Utilizando la definición de integral impropia se tiene∫ ∞

1

1

ex − 1
dx = ĺım

R→∞

∫ R

1

1

ex − 1
dx = ĺım

R→∞
ln

(
eR − 1

eR

)
− ln

(
e− 1

e

)

= ĺım
R→∞

ln
(
1− e−R

)
+ ln

(
e

e− 1

)
= ln

(
e

e− 1

)
= 1− ln(e− 1).

Alternativamente, como 1
ex−1

es positiva en (1,+∞), podemos compararla con la función

x → e−x en +∞, que es donde la integral se vuelve impropia. Vemos que

ĺım
x→+∞

1/(ex − 1)

1/ex
= ĺım

x→+∞

ex

ex − 1
= 1,

luego el carácter de ambas integrales es equivalente. Vemos sin problema que∫ +∞

1

e−xdx = [−e−x]+∞
1 =

1

e
,
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luego la integral considerada converge.

Alternativamente, como 1
ex−1

es decreciente y el intervalo de integración es no acotado,
podemos usar el criterio de la integral para series para concluir que la convergencia de la
integral es equivalente a la de la serie ∑

n≥1

1

en − 1
.

Dicha serie converge de forma manifiesta por el criterio del cociente, por ejemplo, ya que es
de términos positivos y

ĺım
n→+∞

1/(en+1 − 1)

1/(en − 1)
= ĺım

n→+∞

en − 1

e · en − 1
→ 1

e
< 1.
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