Practica 2

Enunciado. Se considera la ecuacion
fl2)?e3@ =g Vo> _—e 3 (E)

1. Justificar que existe una tnica funcién f : (—e~3,4+00) — R cumpliendo (E).
Indicacién: Piensa en la relacién que debe existir entre f y la funcién y +— y3e3Y.
2. Demostrar que f es continua en (—e~3,400) y derivable en (—e~3,0) U (0, +00).
3. Probar que f no es derivable en 0. Explicar geométricamente qué le ocurre a la recta
tangente a la grafica de f en (0,0).
4. Evaluar el siguiente limite
. 6f(x) —5—ex
lim
z—e3 (SU — 63)2

Sugerencia: Calcula el polinomio de Taylor de orden 2 de f en e3.

Solucién.
Sea g : R — R la funcién dada por g(y) = y>e3. Claramente g € C'(R) con

g (y) =3¢y (y+1) WyeR

Nuestra intencion es invertir g en un intervalo adecuado, asi que el primer paso es determinar
qué restricciones de g son inyectivas.

(i) Para y € (—oo,—1) se tiene ¢'(y) < 0, luego g es estrictamente decreciente y, por
tanto, inyectiva.
(ii) Para y € (—1,0) tenemos ¢'(y) > 0, de modo que g es estrictamente creciente y, por
ello, inyectiva.
(iii) Para y € (0,400) se tiene de nuevo ¢'(y) > 0, luego g vuelve a ser estrictamente
creciente e inyectiva.

Como g es continua en y = 0, el teorema del valor medio nos permite concluir a partir de
los puntos (ii) y (iii) que g es estrictamente creciente en (—1,+00), y por tanto inyectiva.

Vemos sin dificultad que

lim g(y) =0, g(-1)=—-e? y g(y) = +oo (y — +00),

y——00
lo que sumado a la monotonia nos da g(—oo, —1) = (—e~3,0) y g(—1,+00) = (—e 73, +00).
Por tanto, para resolver (E) debemos tomar

-1

f= (g\(71,+oo)> :

ya que, por definicién de inversa, g|(_1 yo0)(f(7)) = f(z)3e3/@®) = g para todo z > —e 2.

La unicidad de f es consecuencia de la unicidad de la funcién inversa.

Como g](_1,+oo) es estrictamente creciente y estd definida en un intervalo, su inversa, f,
es continua en (—e~3, +00). Aplicando la regla de derivacién de la funcién inversa sabemos
que f seréd derivable en g(y) si, y solo si, g|’(_1’+oo) (y) #0.

Por el caracter local de la derivada,

91 1o0) () =3P (y +1) Wy > —1,




de donde vemos inmediatamente que f sera derivable en todos los puntos de (—e ™3, 4+00)
excepto en ¢g(0) = 0. Ademads, para y # 0,

e 3

o) = 3P

(D)

Como g\ —1,400) 8 una biyeccién con su imagen, g(y ) = 0 <=y — 0, lo que nos da la
1nformac1on de que

Flg(y) = +o0  (y — 0%).

Por tanto, la recta tangente a f en x = 0 es vertical.

_1_/ 1L
Gréficas de g (izquierda) y f (derecha).

E Aunque no conozcamos la expresion explicita de f, podemos resolver este limite mediante

la féormula infinitesimal del resto. Calculamos pues su polinomio de Taylor de orden 2 en

x:e3.

Para calcular f(e®) = (g](_1+00)) ' (€*) debemos encontrar el tinico y > —1 tal que
y3e3¥ = e3. Es facil darse cuenta de que una solucién es y = 1, y esta es tinica por la
inyectividad de g. Por tanto, f(e) = 1.

Para determinar f/(e3), simplemente sustituimos y = 1 en (D):

re3y L

Derivando una vez més (D) y usando la regla de la cadena:

e (2 + 6y + 3y?)
3y3(1+y)?

1le™®  —11

Fa)d () = - 12g/(1) ~ 7268

7€) = -
Hemos calculado entonces

Tolf, 63](x) =1+ %(x — 63) — %(m — 63)2.

Si Ra(x — €?) denota el correspondiente resto de Taylor de orden 2, vemos finalmente que

lim 6f(x) —5—e 3z — lim —226 (x —e3)? + 6Ry(x — €3) _ 11
z—ed (x — e3)? z—e3 (x — e3)? 24e8°




