
Práctica 2

Enunciado. Se considera la ecuación

f(x)3 e3f(x) = x ∀ x > −e−3. (E)

1. Justificar que existe una única función f : (−e−3, +∞) → R cumpliendo (E).
Indicación: Piensa en la relación que debe existir entre f y la función y 7→ y3e3y.

2. Demostrar que f es continua en (−e−3, +∞) y derivable en (−e−3, 0) ∪ (0, +∞).
3. Probar que f no es derivable en 0. Explicar geométricamente qué le ocurre a la recta

tangente a la gráfica de f en (0, 0).
4. Evaluar el siguiente límite

ĺım
x→e3

6f(x) − 5 − e−3x

(x − e3)2

Sugerencia: Calcula el polinomio de Taylor de orden 2 de f en e3.

Solución.
1 Sea g : R → R la función dada por g(y) = y3e3y. Claramente g ∈ C1(R) con

g′(y) = 3e3yy2(y + 1) ∀y ∈ R.

Nuestra intención es invertir g en un intervalo adecuado, así que el primer paso es determinar
qué restricciones de g son inyectivas.

(i) Para y ∈ (−∞, −1) se tiene g′(y) < 0, luego g es estrictamente decreciente y, por
tanto, inyectiva.

(ii) Para y ∈ (−1, 0) tenemos g′(y) > 0, de modo que g es estrictamente creciente y, por
ello, inyectiva.

(iii) Para y ∈ (0, +∞) se tiene de nuevo g′(y) > 0, luego g vuelve a ser estrictamente
creciente e inyectiva.

Como g es continua en y = 0, el teorema del valor medio nos permite concluir a partir de
los puntos (ii) y (iii) que g es estrictamente creciente en (−1, +∞), y por tanto inyectiva.

Vemos sin dificultad que

ĺım
y→−∞

g(y) = 0, g(−1) = −e−3 y g(y) → +∞ (y → +∞),

lo que sumado a la monotonía nos da g(−∞, −1) = (−e−3, 0) y g(−1, +∞) = (−e−3, +∞).
Por tanto, para resolver (E) debemos tomar

f =
(
g|(−1,+∞)

)−1
,

ya que, por definición de inversa, g|(−1,+∞)(f(x)) = f(x)3e3f(x) = x para todo x > −e−3.
La unicidad de f es consecuencia de la unicidad de la función inversa.

2 Como g|(−1,+∞) es estrictamente creciente y está definida en un intervalo, su inversa, f ,
es continua en (−e−3, +∞). Aplicando la regla de derivación de la función inversa sabemos
que f será derivable en g(y) si, y solo si, g|′(−1,+∞)(y) ̸= 0.

Por el carácter local de la derivada,

g|′(−1,+∞)(y) = 3e3yy2(y + 1) ∀y > −1,
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de donde vemos inmediatamente que f será derivable en todos los puntos de (−e−3, +∞)
excepto en g(0) = 0. Además, para y ̸= 0,

f ′(g(y)) = e−3y

3y2(y + 1) . (D)

Como g|(−1,+∞) es una biyección con su imagen, g(y) → 0 ⇐⇒ y → 0, lo que nos da la
información de que

f ′(g(y)) → +∞ (y → 0±).

Por tanto, la recta tangente a f en x = 0 es vertical.

−1
x

y

−e−3

−1

x

y

Gráficas de g (izquierda) y f (derecha).

4 Aunque no conozcamos la expresión explícita de f , podemos resolver este límite mediante
la fórmula infinitesimal del resto. Calculamos pues su polinomio de Taylor de orden 2 en
x = e3.

Para calcular f(e3) = (g|(−1,+∞))−1(e3) debemos encontrar el único y > −1 tal que
y3e3y = e3. Es fácil darse cuenta de que una solución es y = 1, y esta es única por la
inyectividad de g. Por tanto, f(e3) = 1.

Para determinar f ′(e3), simplemente sustituimos y = 1 en (D):

f ′(e3) = 1
6e3 .

Derivando una vez más (D) y usando la regla de la cadena:

f ′′(g(y))g′(y) = −e−3y(2 + 6y + 3y2)
3y3(1 + y)2 =⇒ f ′′(e3) = − 11e−3

12g′(1) = −11
72e6 .

Hemos calculado entonces

T2[f, e3](x) = 1 + 1
6e3 (x − e3) − 11

144e6 (x − e3)2.

Si R2(x − e3) denota el correspondiente resto de Taylor de orden 2, vemos finalmente que

ĺım
x→e3

6f(x) − 5 − e−3x

(x − e3)2 = ĺım
x→e3

− 11
24e6 (x − e3)2 + 6R2(x − e3)

(x − e3)2 = − 11
24e6 .
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