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Capitulo 1

Los niimeros reales y sus propiedades

Comprender el conjunto de los niimeros reales es el primer paso esencial en el estudio del
Analisis Matematico. Lo presentaremos a partir de sus subconjuntos mas relevantes, sin dar una
definicién concreta de numero real, porque lo importante no es tanto qué es un real como qué
propiedades cumple el conjunto de los reales. En este primer tema estudiaremos su estructura
y propiedades fundamentales, que seran conceptos matematicos basicos para los capitulos
posteriores.

1.1 Subconjuntos notables. Suma y producto de niimeros reales.

El ejemplo mas sencillo de niimeros reales son los niimeros que utilizamos para contar: 1,2,3,....
Llamamos a este conjunto nimeros naturales, y lo denotaremos mediante N. Distinguimos
dos tipos de nimeros naturales: aquellos que pueden escribirse de la forma 2k, con k € N,
reciben el nombre de pares, mientras que los de la forma 2k — 1 se llaman impares.

A partir de esta simple definicién podemos deducir una primera propiedad de los niimeros
naturales.

2

Proposicién 1.1. Sea n € N. Entonces, n es par <= n“ es par. Equivalentemente, n es

impar <= n? es impar.

Demostracion

Por un lado, es facil ver que los nimeros pares tienen cuadrado par, y los impares
tienen cuadrado impar:

(2k)% = 4k = 2 (2K?), (2k —1)? =4k® -4k +1=2(2k* =2k +1) — 1.

Para obtener el reciproco basta observar que un ntimero natural no puede ser par e
impar a la vez, por lo que la paridad de n? determina inequivocamente la de n. [ |

Nota: En disciplinas como la légica, la teoria de conjuntos y la informética es comun
definir N = {0, 1,2, 3,...}. Ambas convenciones son validas; lo importante es especificar
cudl se estd usando. En este curso optamos por no considerar el cero como natural, ya
que simplifica la aritmética elemental y evita excepciones innecesarias.
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Los ntimeros naturales presentan algunas deficiencias. Por ejemplo, no son un conjunto cerrado
para operaciones aritméticas elementales como la resta o la division. Parte de estas se remedian
extendiendo el sistema al conjunto de los niimeros enteros, formado por los nimeros naturales
con signo y el cero:

Z=4{..,-3,-2,-1,0,1,2,3,...}

Curiosidad: Z viene del aleman Zahl, “namero”.

Un sistema mas amplio de niimeros se obtiene tomando cocientes de enteros, es decir, niimeros
de la forma “* con m € Z y n € N. Estos son los denominados ntimeros racionales, y el

conjunto de todos ellos se denota por Q (de “quotient”, cociente).

Calculando la expresion decimal de un ntimero racional dividiendo el numerador por el deno-
minador, se obtiene un ntmero entero o un ntimero decimal exacto o periddico: 0.2, —0.35,
0.3 =0.333..., 4.9989 = 4.99898989. ..

También es cierto el reciproco: cualquier nimero decimal de este tipo puede escribirse como
una fraccion de nimeros enteros.

53T — 231 - 23 _ 104
90 45

En el conjunto Q tenemos una operacién llamada suma, que a cada par (a,b) de ntimeros
racionales asocia un Unico nimero racional, la suma de a con b, indicada por a + b. Asimismo,
disponemos de una segunda operacién llamada producto, que a cada par (a,b) asocia un tnico
numero racional, el producto de a con b, indicado por a - b o, simplemente, ab. Estas operaciones
tienen las siguientes propiedades:

Propiedades de la suma. Para cualesquiera a,b,c € QQ se cumplen:
(P1) Propiedad asociativa: a+ (b+c¢) = (a+b) +c.

P2) Propiedad conmutativa: a4+ b="5b+ a.

(P2)
(P3) Existencia de elemento neutro: a+0=0+a = a.
(P4)

P4) Existencia de elemento opuesto: a + (—a) = (—a) +a = 0.

Propiedades del producto. Para cualesquiera a,b, c € Q se cumplen:
(P5) Propiedad asociativa: a-(b-c¢) = (a-b)-c.

) Propiedad conmutativa: a-b="b-a.

1 1

=a -a=1.

(P6

(P7) Existencia de elemento unidad: a-1=1-a=a (con 1 #0).
(P8) Existencia de elemento inverso: si a # 0, entonces a - a~

(P9

) Propiedad distributiva respecto de la suma: a-(b+c¢)=a-b+a-c.

Es facil comprobar que los elementos neutros de la suma y del producto son dnicos. Ademas,
para cada numero racional el elemento opuesto es inico y, si es distinto de cero, también el
inverso. Dado que a -0 = 0 para todo a € , el 0 no tiene inverso multiplicativo y % no
tiene sentido.

Verificar cada una de estas afirmaciones es un buen ejercicio para el lector.
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Podemos comprobar facilmente que Q es un conjunto cerrado para la suma y el producto, esto
es, el resultado de sumas y productos de niimeros racionales es también un niimero racional.

Proposicién 1.2. Sia,b € Q, entonces a+b € Q,a-be Q, ysib# 0, entonces a/b € Q.

Demostracion

Escribiendo a = 2 yb= f, conp,r €7Zyq,s€Z\{0}, se tiene
q s

s+ r T
a+b=L"T"cq w=2cq
qs qs

Ademas, si r # 0 (¢ # 0),

a _p/q _ps

-="===cQ

b r/s gqr Q
En todos los pasos hemos usado que Z es cerrado para la suma y el producto. |

Lectura en clave algebraica:

» En N, la suma no tiene neutro ni opuestos (fallan (P3) y (P4)), y con el producto
no hay inversos multiplicativos (falla (P8)); por eso (N,+) es un semigrupo
conmutativo.

» En Z, con + y -, obtenemos un anillo conmutativo con unidad (de hecho, un
dominio de integridad); no es un cuerpo porque (P8) falla salvo para +1.

» En Q, con + y -, si tenemos un cuerpo; mas ain, es un cuerpo ordenado (lo
veremos enseguida), aunque no es completo.

\ J

Desde la Antigiiedad, la escuela pitagoérica ya constatd esta falta de completitud de Q, o
existencia de "huecos", al mostrar que la diagonal de un cuadrado de lado 1 tiene longitud v/2,
que no es un ndmero racional.

iAtencion! Si a > 0, a tiene dos raices cuadradas: \/a y —+/a, pero y/a denota siempre
la raiz positiva. Por ejemplo, 4 tiene dos raices cuadradas: —2 y 2, pero v4 = 2.

iBscribir v/4 = £2 no es correcto!

Proposicién 1.3. /2 ¢ Q.

Demostracion

Supongamos por reduccién al absurdo que /2 € Q, y por tanto puede escribirse como

una fraccién irreducible v/2 = 8, con p,q € Z, q # 0y med(p,q) = 1.
q

Entonces p? = 2¢%. Usando la Proposiciéon 1.1 obtenemos que p también es par, lo que
nos permite escribir p = 2m para algin m € N. Sustituyendo, 4m? = 2¢*> = ¢*> = 2m?,
asi que ¢ también es par. Por tanto p y ¢ son ambos pares, lo cual contradice que
mcd(p, ¢) = 1. Por tanto, v/2 no es racional. [ |
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El conjunto de los nimeros irracionales, [, estd compuesto por los niimeros que no son
racionales. Dicho de otra forma, son los nimeros que no pueden escribirse como fracciones de
numeros enteros. Su expresion decimal es infinita y no periédica: 0,246810..., 7 = 3,1415926. . .,
e=2,7182818..., /2 = 1,41421 .. ..

En general, si n € N no es un cuadrado perfecto, entonces y/n es irracional. Ademéds, sia € Q y

b € 1, entonces a + b es irracional y ab también (si a # 0). Por tanto, nimeros como ¢ = %

1 —+/3, =7, 2v/2, ... son irracionales.

Y

Esto nos permite ver al conjunto de los nimeros reales como la uniéon (disjunta) de los
nuimeros racionales y los irracionales:

R=QUIL

Marco algebraico: El sistema (R, +, -) tiene estructura de cuerpo conmutativo (verifica
las 9 propiedades vistas anteriormente y 3 adicionales que veremos a continuacién) y,
ademas, es completo.

- .

0,1010010001... —0,1234567... NG

g cionales 2

22

-1 -5 —-10 -39 1 12 4 1 —
0 350 48 5 16 7

O
\_
25,3401401401... —0,101232323... 48,259 _g
\_ J

\_ J

En la Proposicién 1.3 vimos que la ecuacién z? = 2 no admite soluciones en Q; de forma
equivalente, el polinomio z? — 2 carece de raices racionales.

Este ejemplo sugiere distinguir, dentro de R, aquellos niimeros que si pueden aparecer como
ceros de polinomios con coeficientes enteros. Definimos el conjunto de los niimeros algebraicos
por

A={zeR: Jpe Zz]\ {0} tal que p(z) =0}
De forma manifiesta se tiene Q C A C R.
El complemento R \ A, necesariamente contenido en I, recibe el nombre de nimeros trascen-
dentes. Algunos ejemplos famosos son 7 = 3.1415... y e = 2.7182. .., aunque demostrarlo

requiere herramientas que veremos en temas sucesivos. Como veremos, el estudio de R esta
intimamente ligado al concepto de limite.
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iOjo! No todos los polinomios admiten raices reales. Por ejemplo, no existe x € R tal
que 2 + 1 = 0. Para resolver esa ecuaciéon hay que salir de R y considerar los nimeros
complejos C, que no forman parte del temario de este curso.

Por otra parte, los polinomios con coeficientes enteros de grado impar proporcionan ejemplos
sencillos de ntimeros algebraicos. Esto es una consecuencia del siguiente resultado:

Proposiciéon 1.4. Si p(z) € R|x] tiene grado impar, entonces posee al menos una raiz real.

Idea de la demostracion

Esta demostracion no se vio en clase.

Las raices no reales de un polinomio con coeficientes reales aparecen en pares conjugados.
Por tanto, un polinomio de grado impar no puede tener todas sus raices no reales;
queda al menos una real.

Por ejemplo, la ecuaciéon x® + = + 1 = 0 tiene al menos una raiz real. |

1.2 Orden de los numeros reales.

Ademéds de estas propiedades bésicas de la suma y el producto, presentaremos ahora las relativas
a las desigualdades, que nos permiten comparar nimeros reales y que desempenan un papel
fundamental en el cilculo infinitesimal. Con el propésito de simplificar las ideas, nos restringimos
en primer lugar a los ntimeros racionales.

Definiciéon 1.5. En Q, definimos el conjunto de niimeros positivos como
_JP ;
P—{ : p,q € N o bien —p,—qEN}.
q

Para a € QQ, escribimos a € P <— a > 0.

Con esta nocion, definimos una relacién de orden en Q mediante P:
a<b <= b—achPk,
a>b b<a,

<~
a<b < b—aec PU{0} (equivalentemente, a <b o a=10),
a>b <= a>boa=0b (equivalentemente, a —bc P U{0}).

Propiedades de P.

(P10) Ley de tricotomia: para cada a € Q se verifica exactamente una de las siguientes
alternativas: a =0,a € P o —a € P.

(P11) Cerradura (o estabilidad) de la suma: si a,b € P, entonces a + b € P.
(P12) Cerradura (o estabilidad) del producto: si a,b € P, entonces a -b € P.

De las propiedades de P se deducen facilmente las reglas basicas para operar con desigualdades.
Trabajaremos con la relacién binaria <, que es una relacién de orden porque cumple las
siguientes propiedades para todo a, b, c € Q:



Capitulo 1. Los ntimeros reales y sus propiedades 6

= Reflexiva: a < a.
s Antisimétrica: si a < by b < a, entonces a = b.

= Transitiva: sia < by b < c, entonces a < c.

Demostracion de la transitividad

Por hipétesis, b —a € PU{0} y ¢ —b € P U{0}. Sumando y restando b, se tiene
c—a=(c—b)+ (b—a) € PU{0}, ya que si ambos son positivos la suma es positiva
por la propiedad (P11), y si al menos uno de los dos sumandos es cero entonces el
resultado se tiene trivialmente.

Verificar las otras dos propiedades se propone como ejercicio para el lector. |

\ J

Noétese que la relaciéon < es transitiva pero no reflexiva. Ademas, < es un orden total: dados
a,b € Q cualesquiera, siempre ocurre a < b o bien b < a.

Las consecuencias que usaremos con mas frecuencia son:

a<b = a+c<b+c,
a<b, 0<c¢c = a-c<b-c,
a<b = —a>-b,

1 1
0<a<b = -—>-.
a b

Ejercicio 1.6 (Para el lector). Sia < by b < 0, entonces a < 0y, por tanto, ab > 0.

Dea <byb<0sesigue a < b <0, luego a < 0. Asi, —a € Py —b € P; por la
cerradura del producto en P, (—a)(—b) € P, es decir, ab > 0. [

1.3 Valor absoluto.

Definicion 1.7. Sea a € R. Definimos el valor absoluto de a mediante la formula

a a>0
la] =< - o equivalentemente la| = Va2
—a, a<0,

En particular, |a| € P U{0} y se cumple trivialmente a < |al.

Propiedades del valor absoluto. Sean a,b € R. Se cumplen:
(1) la] >0y Ja| =0 <= a=0; ademas|—a|=a|y |a]* = a.

a

b

_ lal

@) Ja-bl= ol Pl v st b0, || =

(3)
|z] <a <= —a<z<a,
Para z € R :
|z| >a <= z>a0zx< —a.
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Representaciéon en la recta real (para a > 0):

.

(4) Desigualdad triangular: |a + b| < |a| 4 |b], y la igualdad se da si, y solo si, a y b tienen
el mismo signo o uno de ellos es cero.

Como paso previo a la demostracion de la desigualdad triangular, necesitamos el siguiente
resultado:

Lema 1.8. Si x,y > 0, entonces 22 >y = = > v.

Demostracion

2>y = 22—y > 0= (z+y)(z—y) > 0. Multiplicamos la anterior desigualdad
por (z +y)~!, que es una cantidad positiva (;por qué?), para obtener x —y > 0,
como queriamos demostrar. [ |

Demostraciéon de la desigualdad triangular

Como |a + b| = y/(a + b)?, es mds sencillo comparar los cuadrados:

la+b2=(a+b)?=0a®>+b>+2ab < a®>+b%+2]a| |b] = (Ja] + |b])2.

Usando el Lema 1.8 concluimos |a + b| < |a| + |b].
Supongamos ahora que se da la igualdad, esto es, |a + b| = |a| + |b].
Elevando al cuadrado y simplificando, llegamos a que

ab=|a| b] <= ab>0,

es decir, a y b tienen el mismo signo (o alguno de ellos es 0). El reciproco se puede
verificar de forma inmediata.

§ J

(5) Desigualdad triangular inversa: | |a| — [b| | < |a —b].

Demostracion

Por la desigualdad triangular,

laf =la+b—bf<|a—b]+[b] = l|a]—[b] <|a—0b]
Intercambiando a y b,
bl =lb+a—a| <|a—bl+]a] = [b]—la|] <l|a—0b]

Es decir, —|a — b < |a| — |b] < |a — b], lo que equivale a [[a] — [b]| < |a—0]. W
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1.4 Supremo e infimo. Postulado del continuo.

Definicion 1.9. Sea A C R un subconjunto no vacio y = € R.
= Diremos que x es una cota superior de A si a < x para todo a € A.
= Diremos que x es una cota inferior de A si a > x para todo a € A.

» Si A tiene alguna cota inferior (resp. superior), diremos que esta acotado inferiormente o
minorado (resp. acotado superiormente o mayorado). Si se satisfacen ambas, diremos que
A es acotado.

Definicion 1.10. Sea A C R un subconjunto no vacio y mayorado. Llamamos supremo de A a
la menor de sus cotas superiores. Equivalentemente, x = sup A si y sélo si:

(1) x es cota superior de A;

(2) para todo € > 0 existe a € A tal que z — e < a < z (cualquier cantidad por debajo de x
deja de ser cota superior).

Si ademaés sup A € A, entonces sup A = max A y se llama mdzimo de A.
De forma andloga, definimos:

Definicién 1.11. Sea A C R un subconjunto no vacio y minorado. Llamamos infimo de A C R
a la mayor de sus cotas inferiores. Equivalentemente, x = inf A si y sélo si:

(1) z es cota inferior de A;

(2) para todo € > 0 existe a € A tal que x < a < x +e¢.
Si ademas z € A, recibe el nombre de minimo de A, y se denota por min A.

Cuando encontramos un mayorante o minorante dentro de un conjunto, la condicién (2) de
supremo e infimo se verifica trivialmente con a igual a dicha cota. Esto nos proporciona el
siguiente atajo para encontrar, si los hay, el méximo y el minimo de un conjunto A.

Proposicion 1.12. Sea A CR, A # (. Si es una cota superior (resp. cota inferior) de

A, entonces x = max A (resp. + = min A).

Postulado de continuidad o Axioma del continuo o de Dedekind

(P13) Si A es un subconjunto de R no vacio y mayorado (resp. minorado), entonces existe
x € R tal que z = sup A (resp. « = inf A). Dicho de otro modo, el conjunto de los
mayorantes de A (resp. minorantes) tiene minimo (resp. maximo).

Podemos convencernos de forma sencilla que Q no satisface la propiedad (P13). Consideramos
el conjunto A formado por las aproximaciones decimales sucesivas de v/2:

A={1,14,1.41,1.414,...}.

Se cumple A C Q y a < 2 para todo a € A, es decir, A estd mayorado en Q. Sin embargo,
podemos ver que no admite supremo racional.

Demostracion

Supongamos que existe ¢ € Q tal que sup A = ¢. Por construccién, a < v/2 para todo
a € A, por lo tanto ¢ < v/2 por definicién de supremo (la igualdad no puede darse ya
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que v2 € Iy ¢ € Q). Entonces, existe una primera posicién decimal & € N de forma
que ¢ es menor que la truncatura de /2 hasta el k—ésimo decimal, esto es,
[10%- V2] _
<SS — 1.414213...7€ A (|x] = parte entera de z).

k decimales

lo que contradice que ¢ sea el supremo de A. |

\ J

Proposicién 1.13. (Propiedad arquimediana) N no estd mayorado en R. Equivalentemente,
dado = € R puede encontrarse n € N tal que n > .

Demostracion

Supongamos que supN = z € R. Entonces, z — 1 no es un mayorante de N, lo que nos
da un m € N tal que z — 1 < m < z. Como entre z — 1 y z puede haber a lo sumo un
nimero natural, deducimos que n < m para todo n € N, por lo que m seria un méximo
de N, lo cual es imposible, ya que m < m+1 € N. |

. J

| Ejemplo

-

Problema. Sea A = {% + %

sup A e inf A.

Resolucion. Por un lado, 0 < % + %, por lo que A estd minorado e inf A > 0.
Por otro lado, como se tiene n > 1y m > 1, entonces

‘n,m € N}. Veamos que A es acotado y calculemos

1 1
- + - S 27
n o m
por lo que A estd mayorado y sup A < 2. Dado que 2 € A (para n = m = 1), entonces

2 es el maximo de A por la Proposicion 1.12.

Veamos ahora que inf A = 0. Sea € > 0. Debemos encontrar a € A tal que

1 1
0<a=—+—<e.
nom

Por la propiedad arquimediana de N, existe n € N tal que n > %, lo que nos da % < 5.

Entonces, tomando a = % + % se verifica que

0< <€+6 €
a< -+ - =c¢.
2 2

Asi, inf A = 0.

\

Hemos visto que un conjunto de racionales acotado superiormente (resp. inferiormente) no tiene
por qué tener sup (resp. inf) racional. En R, en cambio, esto siempre ocurre. Esta diferencia
caracteriza a los reales y se resume diciendo que R es completo.
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Definicion 1.14. Por extensién de estas propiedades intuitivas de QQ, podemos definir
R como un conjunto numérico provisto de operaciones internas + y - que satisfacen
(P1-P9), junto con un subconjunto Ry (que juega el papel de P) que verifica (P10-P12),
y que, ademds, cumple el postulado de continuidad (P13).

. J

Claramente, R asi definido no es vacio, pues 0,1 € R y a partir de estos y las operaciones
elementales comentadas anteriormente pueden construirse infinitos elementos (Q).

El axioma del continuo nos permite identificar los nimeros reales R con los puntos de una recta.
Para visualizar esto, dibujamos una recta horizontal y fijamos el 0 en un punto que llamaremos
origen. Asociamos el 1 con otro punto a su derecha y tomamos el segmento de extremos 0 y 1
como unidad de longitud. Asi, todo x > 0 se sitia a la derecha del origen a distancia x, mientras
que su opuesto —z es el punto simétrico respecto del origen.

|
S
Oe
—e

x>0

Adoptando este punto de vista, se tiene que el valor absoluto mide la distancia entre dos puntos:
d(a,b) =la—bl =1|b—al > 0.

Esta nocién conduce de forma natural al concepto de intervalo: subconjuntos de R que, en
la representacion geométrica de la recta real, se identifican con segmentos o semirrectas, con
extremos abiertos o cerrados segin el caso.

Definiciéon 1.15. Sean a,b € R con a < b. Se definen

J)={xeR:a<z<b}
={zeR:a<z<b}
={zeR:a<z<b}

(intervalo abierto),
(
(
[a,b) ={x € R:a<xz<b} (semiabierto o semicerrado).
(
(
(
(

intervalo cerrado),

semiabierto o semicerrado),

(—o0,a) ={zeR:x<a} semirrecta abierta),
(—o0,a)={zxeR:z<a} semirrecta cerrada),
(a,4o0)={x€eR:x>a} semirrecta abierta),
[a,40)={xeR:z>a} semirrecta cerrada),

La demostracién de la siguiente propiedad, que relaciona la nocién de distancia introducida
anteriormente con los intervalos recién definidos, se deja como ejercicio para el lector:

Proposicion 1.16. Sean x,a € Ry r > 0. Se tiene

|t —a|<r <= z€(a—T1,a+T), lz—a| <r < z€la—r,a+r].
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Convencién de notacién: Cuando pueda haber ambigiiedad con los paréntesis (por
ejemplo, si (z,y) denota pares ordenados en el plano), escribiremos los intervalos
abiertos con corchetes hacia fuera:

la,b] en lugar de (a,b),

y, de forma andloga, los semiabiertos como [a, b[ y ]a, b]. Ambas notaciones son equiva-
lentes; s6lo adoptaremos |-, - [ para evitar confusiones.

.

1.5 Densidad de Q e I en R.

El objetivo de esta secciéon es demostrar la siguiente idea intuitiva: por pequeno que se tome
un intervalo (a,b) C R, siempre aparecen infinitos nimeros racionales e infinitos irracionales.
Claramente, los enteros Z no verifican esta propiedad R: por ejemplo, (0,1) N Z = ().

Dividiremos la demostraciéon de esto en varios pasos sencillos.

Proposicion 1.17. Dados a,b € Q con a < b, existen infinitos ¢ € QQ tales que a < ¢ < b.

Demostraciéon

. a+
Basta tomar el promedio g = — Puesto que a < b, se cumple

a N a - a
a=—-4—
2 2
Repitiendo el procedimiento con a y ¢ o by ¢ se obtienen infinitos racionales distintos
entre a y b. |

\ J

| Ejemplo

e N

ol

Problema. Encontrar un ntimero racional entre % y

Resolucion. El promedio sirve:

1<1<1+3>_2<3
5 2\5 5/ 5 5

Ademaés, podemos encontrar mas puntos tomando promedios sucesivos:

1<1(1+2>_3 2<1<2+3)_1<3
5 2\5 5/ 10’ 5 2\5 5/ 2 5
2 3 1
5 10 2

(S]]
glw  +

ol +
—_
(S

U=+

\ J

A continuacién, demostramos que entre dos racionales cualesquiera también hay infinitos
irracionales. La idea de la demostracién es sumar un irracional muy pequeno al punto intermedio.
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Lema 1.18. Seann € N, g € Q con ¢ # 0 y r € [. Entonces:

(1) Sin no es un cuadrado perfecto, entonces /n es irracional. En particular, para todo ntimero
primo p, \/p € I

(2) g-rel

3) ¢+rel

Demostracion

El item (1) se demuestra de manera andloga a la Proposicién 1.3, y la omitimos para
mayor brevedad. Demostramos por tanto los puntos (2) y (3).

En primer lugar, si gr fuera racional, entonces por la Proposiciéon 1.2 también lo seria

qr . . . ; .
r = —. De igual forma, si ¢ 4 r fuera racional, entonces r = (¢ + r) — ¢ serfa racional.

Ambas conclusiones contradicen la hipotesis r € 1. [ |

u J

Proposicién 1.19. Dados a,b € Q con a < b, existen infinitos s € I tales que a < s < b.

Demostracion

+b

a /. .
Sea m = —5 ¥ tomemos un niimero primo p. Observamos que

Ahora, definimos

e=(b—m) VP,
p
Por el Lema 1.18, se tiene ¢ € 1. Ademas, 0 < € < b — m. Finalmente, definimos

s =m + €, y comprobamos que es el nimero que buscamos:

a<m<s=m+e<m+(b—m)=0.

Ademaés, s € I por el Lema 1.18. Repitiendo el procedimiento con distintos primos p se
obtienen infinitos irracionales en (a,b).

Nota: Demostrar que el conjunto de los niimeros primos es infinito puede hacerse
mediante una sencilla reduccién al absurdo, usando el algoritmo de la division Euclidea.

\

En el tercer paso, demostramos que entre dos irracionales cualesquiera siempre podemos
encontrar un racional.

Proposicién 1.20. Sir,s €I con r < s, entonces existen infinitos racionales g € Q tales que
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r<q<s.

Demostracion

El conjunto de los ntimeros naturales no estd mayorado en R, por lo que es posible
encontrar un natural n € N tal que n(s —r) > 1. Entonces ns > nr + 1, lo que implica
que el intervalo (nr, ns) tiene longitud estrictamente mayor que uno. Esto nos garantiza
la existencia de un entero k € Z tal que r < k < sn.

Para concluir, basta tomar ¢ = % € Q. Los infinitos valores posibles se obtienen al
tomar otros naturales m > n (obteniendo por tanto distintos k). [ |

N

| Ejemplo

>

Problema. Hallar un ntimero racional entre /5 y V6.

Resolucion. Buscamos n € N y k € Z tales que
k
¢5<E<»@.
La desigualdad anterior equivale a 5n? < k? < 6n?. Tomando n = 5 se tiene
5n? =125 y 6n% =150,

y como 144 = 122 verifica 125 < 144 < 150, obtenemos

) 5

V125 12 150

12
Asi, | ¢g= =

Alternativamente, podemos proceder como sigue: tomamos n = 3 y escribimos

V45
3

es un racional entre \/5 y \/6

5 =

)

54
Vo= Y3t
3
Buscamos ahora un cuadrado perfecto entre 45 y 54; vale 49, luego

49 7
“5<§:3<ﬁ‘

7
Asi, es un racional entre v/5 y v/6.

.

4

Ya tenemos todos los ingredientes necesarios para demostrar el principal resultado de esta

seccién, que es la densidad de Q e I en R.

Teorema 1.21. Dados a,b € R con a < b, existen infinitos nimeros racionales e infinitos

irracionales en el intervalo (a,b).
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Demostracién

Si a y b son ambos racionales, podemos aplicar los Lemas 1.17 y 1.18. Sia € Q y b € I,
entonces el punto medio m = GTH’ € I, por lo que tomando el nuevo intervalo (m,b) (o
(a,m), segtn corresponda), podemos reducirnos al caso de dos extremos irracionales.

En este escenario, la existencia de infinitos racionales viene dada por el Lema 1.20.
Luego, podemos encontrar infinitos irracionales aplicando el Lema (1.18) a los racionales
recién encontrados. |

Nota: Como consecuencia particular de esta propiedad, existen infinitos niimeros reales
entre dos niimeros reales distintos cualesquiera. Por tanto, ningin real tiene sucesor
inmediato, como si ocurre en los enteros.

- J

1.6 Principio de induccién.

Llamaremos demostracion a un encadenamiento de afirmaciones cuya validez es facil de com-
probar en cada paso, que parte de una situacion inicial (la hipdtesis) y concluye en el resultado
que queremos (la tesis). En este tema hemos visto dos tipos principales de demostraciones:

= Directa: se deduce la tesis a partir de las hipétesis con reglas ya conocidas.

= Por reduccién al absurdo: se supone falsa la tesis y se llega a una contradicciéon. Por
ejemplo, la Proposicién 1.3, en la que probabamos que v/2 ¢ Q.

Introducimos ahora un nuevo tipo de argumento que nos permite demostrar la validez de
propiedades o férmulas que dependen de un niimero natural n € N.
Sea P(n) una afirmacién que depende de n € N. Una demostracién por induccién consiste en

dos pasos principales:

(1) Caso base: P(ng) es verdadera (tipicamente ng = 1).

(2) Paso inductivo: si P(n) es verdadera (esto se llama hipdtesis de induccion), entonces
también lo es P(n + 1).

Con estas dos comprobaciones, P(n) resulta verdadera para todo n > ny.

Nota: Intuitivamente, podemos compararlo con subir una escalera: si el primer escalén
se puede pisar, y sabemos pasar de cada escalén al siguiente, entonces podemos subir
la escalera indefinidamente.

Principio de induccién: Sea P(n) una proposicién para n € N y sea ng € N. Si P(ng) es
verdadera y, dado un n > ng (fijo pero arbitrario), de P(n) se sigue P(n + 1), entonces P(n) es
verdadera para todo n > ng.
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| Ejemplo

e

Problema. Demostrar que para todo n € N se cumple

n(n—i—l)'

L+24 - dn=——

Resolucién. Planteamos una demostracién por induccion.
Comprobamos la veracidad de la etapa base; en este caso, n = 1:

1(141)
2

1= =1.

Para verificar el paso inductivo, supongamos que la igualdad es cierta para algin
n € N, y buscamos demostrar que se verifica también para n + 1:

1
1424 4n= n(n;—) (hipdtesis de induccidn).
Entonces
n(n+1
1—|—2+-'-—|—n+(n+1):(2)—|—(n+1)
nn+1)+2n+1) (n+1)(n+2)

2 2 ’

que es precisamente la férmula para n + 1.

Nota: La férmula anterior también puede demostrarse de forma directa. Llamamos
Sn =142+ -4+ n. Escribiendo también S,, al revés y sumando término a término,
tenemos:

2S=(mn+1)+---+(n+1) =n(n+l),

n veces

S=1+24+---+(n—1)+n,
S=n+n-1)4+---+2+1,

n(n+1)

—y

También puede hacerse una demostracion basada en un dibujo, pero hay que tener
cuidado con estas: jno podemos sacar conclusiones sobre lo que el dibujo
nos parece!

de modo que S =

Podemos comprobar que el nimero 1+ 2+ - - -+ n aparece como la cantidad de puntos
de un tridngulo escalonado con filas de longitudes 1,2, ..., n.

Dos copias de ese tridngulo forman un rectangulo con n - (n + 1) puntos, luego la mitad

1
vale exactamente %
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[ ) O O O O (] (]
[ ) [ ) O O O (] (]
) [ ) [ ) O O O (@]
n—+1
[ ] [ ] [ ] [ ] O O O
[ ] [ ] [ ] [ ] [ ] O O
[ ] [ ] [ ] [ ] [ ] [ ] O
[ ] [ ] [ ] [ ] [ ] [ ] [ ]
n

Variantes del principio de induccién A veces, tendremos un caso base para ng # 1, es decir,
debemos demostrar P(n) sélo para n > ng, donde ng es un natural dado (no necesariamente 1).
En esta situacién, comprobamos:

= P(ng) es verdadera (caso base).

» Si P(n) se verifica para algiin n > ng, entonces P(n + 1) también (paso inductivo).

l Ejemplo

>

Problema. Probar que, para todo natural n > 10, se cumple 2" > n3.

Resoluciéon. Empezamos comprobando el caso base, correspondiente a n = 10:
210 = 1024 > 1000 = 103,

Paso inductivo. Supongamos cierta la desigualdad para algin n > 10: 27 > n3.
Entonces
2"t =9.9m > 953,

Por otra parte, sacando factor comin n? y usando que n > 10,

(n+1)*=n%+3n* +3n+1

3 3 1 331
<14 2 b 2 p )= 2283,
—”<+10+100+1000) 1000 " ="

Luego 2"+! > 2n3 > (n 4+ 1)3, y queda probado el paso inductivo.

\ J

A veces, el paso inductivo requiere conocer simultdneamente P(n — 1) y P(n). En ese caso,
verificamos:

» P(ng)y P(no+ 1) son verdaderas (dos casos base).
» Paran >ng+1,si P(n—1)y P(n) son verdaderas, entonces P(n + 1) es verdadera.

Ejercicio 1.22. Demostrar por induccién que, para todo n € N,

14344+ 2n—1)=n%
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El siguiente ejemplo muestra otra variacién del mismo tipo de razonamiento, en el que damos
saltos de cuatro en cuatro niimeros naturales.

| Ejemplo

>

Problema. Probar que, si n € N no es miltiplo de 4, entonces S,, = 1" + 2™ 4 3™ 4 4"
es un multiplo de 10.

Resolucion. En la etapa base, comprobaremos que la afirmaciéon es cierta para
n =1,2,3. En efecto, S; = 10, So = 30 y S5 = 100.

A continuacién, veamos que, si la afirmacion es cierta para un n € N, entonces también
lo es para n + 4. Partimos de una sencilla identidad:

a"—a" =a"(a®?+1)(a®—1) Ya>0 VYneN.
Entonces, podemos escribir

Sn+4 - Sn = 1n+4 1" 2n+4 _on 3n+4 3" 4 4n+4 _yn
=15-2"4+80-3" +255-4" =10(3-2""' +8-3" +102-4""").
k1eN

Por hipétesis de induccioén, S,, = 10ky con kg € N, lo que nos da
Sn+4 = Sn + 10k = 10(1€0 + ]ﬁ),

como se pretendia demostrar.

Demostracién grafica: Partimos de un cuadrado n x n de puntos. Para cada k =
1,2,...,n, la capa que convierte el cuadrado (k — 1) x (k — 1) en el cuadrado k x k
tiene exactamente 2k — 1 puntos: la fila superior de longitud k y la columna derecha

de longitud k — 1. Sumando todas las capas se obtiene n?.

—

1.7 Numerabilidad

Finalmente, presentamos herramientas que nos permiten comparar de forma rigurosa la cantidad
de elementos que hay en algunos de los conjuntos numéricos que hemos introducido.

Definicién 1.23. Sean X,Y conjuntos. Una aplicacién (o funcién) es una relaciéon f C X x Y
tal que, para cada x € X, existe un tinico y € Y con f(x) = y.
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» Decimos que f es inyectiva (uno-a-uno) si f(x1) = f(x2) implica que z1 = x2. Equiva-
lentemente, cada y € Y tiene a lo sumo una preimagen.

» Decimos que f es sobreyectiva si para todo y € Y existe z € X tal que f(z) = y. Dicho
de otra forma, cada y tiene al menos una preimagen.

= f se dice biyectiva si es inyectiva y sobreyectiva a la vez.

X Y X Y

Aplicacion inyectiva pero no sobreyectiva Aplicacién sobreyectiva pero no inyectiva

Definicién 1.24. Llamamos cardinal de un conjunto X al ntimero de elementos de X y lo
denotamos por #X o card(X).

Para conjuntos finitos, una aplicacién inyectiva X — Y implica card(X) < card(Y), y una
biyectiva X <> Y implica card(X) = card(Y’). Podemos usar este hecho para definir la nocién
de tener la misma cantidad de elementos para dos conjuntos cualesquiera.

Definiciéon 1.25. Decimos que dos conjuntos X e Y son equinumerosos si existe una biyeccién
entre ellos.

Proposicion 1.26. Si X C Y, entonces #X < #Y.

Demostracién

De forma clara, la aplicacién inclusion

I1:X—=>Y
I(z) =1z

es inyectiva, lo que nos da directamente el resultado. |

N J

Definiciéon 1.27. Un conjunto X es numerable si existe una aplicaciéon inyectiva X — N.
En particular, todo conjunto finito es numerable. El cardinal de cualquier conjunto infinito y
numerable se denota por Xy (el menor cardinal infinito).

Proposiciéon 1.28. NU {0} es numerable y #(NU {0}) = N,.

Demostracion

Dado que N C N U {0}, entonces #(N U {0}) > Nj. Por otro lado, es inmediato
comprobar que la aplicaciéon n +— n + 1 de NU {0} en N es inyectiva, lo que nos da la
otra desigualdad. |
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Proposicion 1.29. Z es numerable. De hecho, #7Z = Ng.

Demostracion

.

Dado que N C Z, tenemos #7Z > #N = Xy por la proposiciéon anterior. Veamos ahora

la otra desigualdad, que se sigue de la existencia de una aplicacién inyectiva f : Z — N.

Consideramos f : Z — N dada por f(k) = -2k sik <0y f(k) =2k —1si k> 1. Asi:
0—0, 1—1, —-1—2 23 —-2—4, 35,

Supongamos que, para n,m € Z se tiene f(n) = f(m). Dado que f(k) =0« k=0,

entonces necesariamente n y m son ambos positivos o ambos negativos. Vemos que:

(1) Sin,m < —1, entonces f(n) = f(m) & —2n=—-2m < n=m.
(2) Sin,m > 1, entonces f(n) = f(m) < 2n—1=2m—1<n=m.

Consecuentemente, f es inyectiva y #27 < V. |

Proposiciéon 1.30. QQ es numerable. De hecho, #Q = Ng.

Idea de la demostracion

-

Usando el método de Cantor, nos convencemos de que existe una aplicacién inyectiva
entre N y los ntimeros racionales positivos. Consideramos la cuadricula de racionales
positivos:

}?; (peN, geN),

y recorramosla por diagonales segin p 4+ q¢ = 1,2, 3, ..., omitiendo las fracciones no
reducidas (es decir, sélo aceptamos p/q con med(p, q) = 1).

1 2 3 4 5
I I 1 | 1
L 3 4 5
2 % 2 2 2
L P 3 4 5
3 3 3 3 3
L 2 3 4 5
1 1 1 1 1
1 2 3 4 5
5 5 5 5 5

El procedimiento enumera cada racional una tnica vez, de modo que obtenemos una
biyeccion. Luego, repetimos este procedimiento con los enteros negativos y los racionales
negativos, y relacionamos el 0 consigo mismo.

Concluimos que #Q = #7Z = Ng. [ |

J

Es posible demostrar, aunque no lo haremos en este curso, que si un conjunto X es infinito
y numerable, entonces la existencia de una aplicacién inyectiva X — N es suficiente para

garantizar la existencia de una biyecciéon X < N.

Proposicion 1.31. Todo conjunto numerable es finito o equinumeroso a N.
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Nos centramos ahora en probar la existencia de conjuntos no numerables. El ejemplo mas
importante es R, pero tenemos multitud de ellos: ningtn intervalo abierto de R lo es.

Proposiciéon 1.32. #(0,1) = #(—1,1) = #R.

Demostracion

FEsta demostracion no se vio en clase.

Por un lado, es facil comprobar que f : (0,1) — (—1,1) dada por f(z) =2x — 1 es una

biyeccién entre (0,1) y (—1,1), cuya inversa es f~1(y) = y—;l Esto nos da la primera
igualdad.

Por otro lado, consideramos

o
1=l

P (_17 1) — R? (p(ﬁ?)

Es facil comprobar que ¢ es biyectiva y que su inversa es

‘p_l R— (_13 1)’ (70_1(3/) =

Por tanto, #(—1,1) = #R. [ |

. J

Proposicion 1.33. R no es numerable.

Demostracion

Esta demostracion no se vio en clase.

La Proposicién 1.32 nos dice que la cardinalidad de R es igual a la del intervalo (0, 1),
asi que basta comprobar que este no es numerable. Supongamos, por absurdo, que
(0,1) es numerable y enumeramos sus elementos mediante su tinica expansién decimal
sin 9 periédicos:

Tr1 = O.analgalg PN
T — 0.&210,22&23 PPN

x3 = 0.az1a32a33 . . .,

con a;; € {0,1,...,9}. Definimos un niimero real tomando la diagonal de las expresiones
decimales anteriores y sumandole uno:

Tr = Oblb2b5 ceey con bl = i + S% Gii < 9’

0 sia; =9.
Claramente = € (0, 1), por lo que x = xj, para algin k € N. Pero, por construccion, el
k—ésimo decimal de x y el de x; son diferentes, lo cual contradice la hipdtesis de que
(0,1) es numerable. [ |
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Otro ejemplo de conjunto no numerable serd el conjunto de todos los subconjuntos de N, al
que llamamos partes de N. Esto es consecuencia de la Proposicién 1.31, junto a la siguiente
observacion:

Proposicién 1.34. Si P(A) denota el conjunto de todos los subconjuntos de un conjunto A,
entonces ninguna aplicacién f : A — P(A) puede ser sobreyectiva.

Demostracién

FEsta demostracion no se vio en clase.

Sea f : A — P(A) una aplicaciéon. Para cada a € A podemos preguntarnos si a
pertenece o no al conjunto f(a). Con esa idea construimos el conjunto

B={acA:a¢ f(a)}.
Veamos que B no puede ser imagen de ningun elemento de A, es decir, f(a) # B para
todo a € A. Razonamos como sigue:

» Sia € B, entonces por definiciéon a ¢ f(a), asi que f(a) # B.
» Sia ¢ B, entonces por definicion a € f(a), y de nuevo f(a) # B.

En ambos casos obtenemos que f(a) # B para todo a € A. Por tanto, el conjunto B
no esta en la imagen de f. |

. J

Enunciamos sin demostrar el siguiente resultado, pues requiere de herramientas que escapan a
los contenidos de este tema.

Proposicién 1.35. #R = #P(N) = 2%, Este cardinal se conoce como cardinal del continuo.

e N

La Hipétesis del Continuo (HC), formulada por Georg Cantor, afirma que no
existe ningtin conjunto cuya cardinalidad sea estrictamente mayor que la de N pero
estrictamente menor que la de R. Es decir, la HC dice que

card(R) = Ny,

donde N; es el siguiente cardinal inmediatamente posterior a Xy = card(N).

Un resultado fundamental de la teoria de conjuntos es que la HC es indecidible: ni
puede probarse ni refutarse a partir de los axiomas usuales de la teoria de conjuntos
(los axiomas de Zermelo-Fraenkel con el Axioma de Eleccion, ZFC). Esto significa que
existen dos teorias matematicas igualmente coherentes: ZFC + HC y ZFC + —HC.
Por tanto, segin se adopte una u otra convencién, se obtiene una vision distinta de la
jerarquia de los conjuntos infinitos. En cualquier caso, estos resultados muestran los
limites de lo que puede alcanzarse mediante la deduccién axiomatica.
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Anexos del capitulo

1.A Resolucion de inecuaciones con valor absoluto

| Ejemplo

be

Problema. Dado y € R, hallar los valores de x € R tales que |z + 8| = |3z — y|.

Resolucion. Por definicion de valor absoluto, equivale a resolver dos ecuaciones y unir
sus conjuntos de soluciones:

8
r+8=3rx—y = x:&,
2
y—8 (1.1)
r+8=—-Br—-y)=y—3x = T =

N

l Ejemplo

>

Problema. Dado y > 0, encontrar los valores de z tales que |z — 3| < y.

Resolucion. —y <z -3 <y < 33—y <z <3+ y. Es decir,
{zeR: [z-3[<yt=[3-y, 3+y].

(Son los puntos cuya distancia al 3 es menor o igual que y.)

.

| Ejemplo

e

Problema. Resolver |z — 1| + [z — 2| > 1 para z € R.

Resolucion. Estudiamos la inecuacién por tramos:

r<1: lz—1l=1-2z, |[z—-2[=2—-2 = 3-2z>1 <= <1,

1<z<2: |[z—1]=x—-1, |r—2|=2—2 = 1>1 (no hay soluciones),

r>2: lt—1l=2z—-1, |z—2/=2-2 = 2r—3>1 < z>2.
Solucién:

(—o0,1) U (2,00).

La funcién f(x) = |z — 1| + |z — 2| es lineal a trozos, asi que también podemos recurrir
a una representacién geométrica de su grafica:
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fla) =z =1+ |z -2




Capitulo 2

Sucesiones de numeros reales

En este tema aparece por primera vez una de las ideas centrales del Analisis Matematico: la
convergencia. Nos centraremos primero en la convergencia de sucesiones de niimeros reales, que
més adelante servird como herramienta esencial en el estudio de las funciones reales de variable
real.

Intuitivamente, una sucesion de niimeros reales es una lista ordenada de niimeros reales indexada
en los naturales:

{l’l,l'z,l'g,,. . .,:L‘n,...}
Definiciéon 2.1. Una sucesion es una aplicacién
S:N—=R, n— Shn)=umxz,.

A menudo identificamos la sucesién con su imagen S(N) = {z,, : n € N}, a la que denotamos
{xn}nen o simplemente {z,} si no hay lugar a confusién. La principal ventaja de esta notaciéon
es su brevedad: por ejemplo, la sucesion {%} es la aplicacién S : N — R tal que S(n) = % para
todo n € N, pero escribiendo {%} yva sabemos a qué sucesion nos referimos.

Si {x,} es una sucesién, llamamos al n-ésimo término z,, el término general de la sucesién,
pues nos permite reconstruirla completamente. En algunos casos, x, viene dado mediante una
formula recursiva.

e ~

Ejemplos:
n—1
1 1 2 3
(2) xlzlvxn:m VTLZQ = {l'n}:{l,i,g,g’}

(3) (Sucesién de Fibonacci) 1 =1, 20 =1, &y = X1 + T2 Vn >3,
= {on)=1{1,1,2,3,58,13,...}.

La sucesién de Fibonacci y la razén aurea: La sucesion de Fibonacci se define
mediante la recurrencia

Ty = Tpn—1 + Tn_29, n>3 conxi=1yax=1.

24
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El término general x,, puede expresarse en funcién de n gracias a la férmula de Binet:

e hl-(2))

donde ¢ es la razén durea, que satisface ¢ — ¢ — 1 =0.

Idea de la demostracién: buscamos soluciones de la forma x,, = r”, con r > 0.
Sustituyendo en la recurrencia se obtiene

L I N T S}

2

La llamada ecuacion caracteristica r* —r — 1 = 0 tiene por soluciones

1++5 1-5 1
5 =

¥ = 9 o

Puede verse (con herramientas que escapan a los contenidos de este curso) que la
solucion general de la recurrencia es una combinacion lineal

Tp = O“pn + Bd}n’ O‘)ﬂ €R.

Imponiendo las condiciones iniciales 1 = 1, o = 1, podemos determinar o y 5:

(" —").

\ J

2.1 Sucesiones convergentes

Definicién 2.2. Decimos que una sucesién {z,} estd acotada cuando su imagen
{z1,22,..., Ty, ...} es un subconjunto acotado de R. Equivalentemente, si existe M > 0 tal que

|xn| <M VneN (M no depende de n ).

| Ejemplo

e

. —1)"
Problema. Demostrar que la sucesién {1 + %} = {0, %, %, g, ...} es acotada.
Resolucion. Usando las propiedades del valor absoluto, podemos ver que

(=" (=n"

1
\xn:‘1+ :1+H§2 Vn € N.

1]

. J

La siguiente definicién es una de las mas importantes en matemdaticas, y también una de las
mas dificiles de asimilar para quienes acaban de iniciarse en esta disciplina. La enunciamos
formalmente, y después haremos comentarios con la esperanza de facilitar su comprension.

Definicién 2.3. Sea {x,} una sucesiéon y L € R. Decimos que {z,} converge a L si:

Ve >0 IngeN tal que [n>nyg = |z, — L| <e¢].

En tal caso, se dice que L es el limite de {z,} y escribimos

lim z, =L, obien {z,} - L (n— +00).
n—+400
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Conviene subrayar que el niimero natural ng que aparece en la definicién depende casi siempre
del € > 0 considerado. Para probar que {x,} — L hay que dar una regla que, a cada ¢ > 0, le

asigne un nimero natural ng tal que se cumpla |z, — L| < € siempre que n > ny.

La condicién |z, — L| < € es mas estricta cuanto mas pequeno sea €, y equivale a

En otras palabras, por muy pequeiio que sea ¢, el intervalo (L — e, L 4 €) contiene a todos los

L—e<z,<L+e.

términos de la sucesién a partir de cierto punto.

-

\

Interpretacién grafica:

L es el limite de {x,} si, por pequenio que sea £ > 0, existe un ng tal que todos los
términos de la sucesién con n > ng quedan dentro del intervalo (L — e, L + ¢).

(_57 5)

o ! !

o 1

Desde el punto de vista geométrico, la desigualdad |z, — L| < € expresa que la distancia
entre x,, y L en la recta real es menor que €. De este modo, la convergencia {z,} — L
significa que podemos acercar los términos de la sucesién a L tanto como queramos,
basta con tomar n suficientemente grande (dependiendo de ¢). Asi, los términos de la
sucesién se aproximan a L de forma cada vez méas precisa.

Definicién 2.4. Decimos que {x,} es convergente cuando tiene un limite L € R.

Proposiciéon 2.5. El limite de una sucesién, si existe, es tnico.

Demostracion

-

Supongamos que {z,} — L1y {x,} — L2, y veamos que necesariamente se tiene
L1 = Ls. Sea ¢ > 0. Por la definiciéon de convergencia, existen mq, ms € N tales que

|z, — L1| <& para todo n > my, |z, — Lo| <& para todo n > mso.
Tomando n > m = max{mi, ma}, se tiene
‘Ll—Lgl:’Ll—xn—l—{L’n—Lg‘ < ’L1—$n|—|—‘xn—L2‘ <e+e=2e.

Como € > 0 es arbitrario, la propiedad arquimediana nos permite concluir que |L —
Ls| <0, lo cual implica que |L; — Lo| = 0, es decir, Ly = Lo. [ |

| Ejemplo

e

Problema. Demostrar que la sucesién {1/n} converge a L = 0.

Resolucidn. Sea ¢ > 0. Por la propiedad arquimediana, existe m € N tal que m > 1/e.
Entonces, para todo n > m se cumple

1-0]=1i<1l<e

1
m

S|
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| Ejemplo

s N

Problema. Probar que la sucesién {n} no es convergente.

Resolucién. Supongamos, por contradiccién, que {n} — L para algin L € R. Toma-
mos € = 1. Entonces existiria m € N tal que para todo n > m,

In— Ll <1 = n<L+1

Esto implica que L 4+ 1 seria un mayorante de N, lo cual contradice la propiedad
arquimediana. Por tanto, {n} no converge.

\ J

Proposicién 2.6. Si {z,} es convergente, entonces {x,} estd acotada.

Demostracién

Sea {x,} — L. Por la definicién de convergencia, existe m € N tal que

|, — L] < 1 para todo n > m.
Entonces, para n > m,
|#n| < |zn — LI+ L] <1+ |L].

Por otra parte, el conjunto {|z,| : n < m} tiene maximo por ser finito. Sea pues
M = max{|z,| : n < m}, que depende de m pero no de n. En consecuencia,

|zp| <méx{1+ |L|, M} Vn €N,

y la sucesion {z,} estd acotada. [ |

N

La implicacién reciproca es falsa: la sucesién {(—1)"} estd acotada pero no es convergente.

e ~

Idea 1til (colas acotadas). Si para cierto m € N el conjunto {z, : n > m} es
acotado, entonces la sucesion completa {z,} es acotada. En efecto, si |z,| < M; para
n>my My =max{|zi|,...,|xm—1]}, entonces

|z | < méx{My, My} VneN.

N

La sucesién (—1)™ no converge, pero al fijarnos solo en sus términos de indice par o, alternati-
vamente, en los de indice impar, obtenemos sucesiones que si lo hacen. Este ejemplo muestra
la idea de que, seleccionando ciertos términos de una sucesion, podemos construir una nueva,
llamada subsucesion o sucesion parcial de la original.

Definicion 2.7. Sea S : N — R una sucesién y sea ¢ : N — N una aplicacién estrictamente
creciente, esto es, para n,m € N con n < m se tiene o(n) < o(m). Llamamos a la sucesion
Soo:N— R, definida por n +— S(o(n)), una subsucesién o sucesién parcial de S.

Si S = {zn}, entonces denotamos {7, (,)} a la subsucesion.
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Ejemplo:

Las aplicaciones n — 2n, n — 2n — 1 y n — 2™ son estrictamente crecientes, lo que
nos da tres subsucesiones notables:

{zon} = {x2,24,76,...} (subsucesion de los términos en posicién par),
{zon—1} = {x1,23,25,...} (subsucesién de los términos en posicién impar),

{zon} = {x, x4, 3, . (subsucesién de los términos en posicién potencia de 2).

\ J

Vemos ahora que la convergencia de una sucesién implica la convergencia de todas sus parciales.
Proposicién 2.8. Si {z,} — Ly {7} es una subsucesién, entonces {z,(,)} — L.

Lema 2.9. Si o : N — N es estrictamente creciente, entonces o(n) > n para todo n € N.

Demostracion

Procedemos por induccién. Para n = 1, como o(1) € N, se tiene necesariamente
o(1) > 1. Supongamos ahora que o(n) > n. Como o es estrictamente creciente, se

cumple
on+1)>0o(n) >n,

luego o(n + 1) > n + 1. Por induccién, concluimos que o(n) > n para todon € N. W

.
Demostracién de la Proposicion 2.8

Sea £ > 0. Como {z,} — L, existe m € N tal que

|z, — L| < e para todo n > m.
Ademas, por el Lema 2.9, si n > m entonces
on) > n > m.
Por tanto, para n > m se verifica
|To@m) — L] <e.

Nétese que para cada € > 0 podemos usar el mismo m que proporciona la convergencia
de la sucesion de partida. [ |

N J

Como consecuencia de este resultado y de la unicidad del limite, si existen dos subsucesiones
tales que

{xm(n)} — L, {mUz(n)} — Lo, Ly # Lo,

entonces {x,} no tiene limite.



Capitulo 2. Sucesiones de niimeros reales 29

| Ejemplo

s N

Problema. Estudiar la convergencia de {z,} = {2+ (—1)"}.

Resolucién. Estudiemos las subsucesiones:
{zon} = {2+ (-1} ={3,3,3,...} = {za.} — 3,

{ron 1} =12+ (D> ={1,1,1,...} = {x2,1}— 1L

Dado que los limites de las dos subsucesiones difieren, concluimos que {z,} no tiene
limite.

N

En general, la convergencia de unas pocas subsucesiones de {x,} a un mismo limite no implica
que {x,} sea convergente o que tenga el mismo limite. Basta pensar en una sucesién del tipo

0 sin es potencia de 2
{zp} =< 0 sin espotenciade 3 ={1,0,0,0,5,6,7,0,0,10,...}.
n en otro caso

Es facil comprobar que {xan} y {x3n} convergen a 0, pero {z,} no es convergente.

Sin embargo, existen excepciones notables que podemos utilizar:

Ejercicio: Sea {x,} una sucesion. Si existe L € R tal que {z2,} — Ly {x2n—1} — L,
entonces {x,} — L.

Recogemos en el siguiente resultado las principales propiedades de las operaciones que podemos
realizar con sucesiones convergentes, que seran reglas basicas para el calculo de limites.

Proposicién 2.10. Sean {z,}, {yn} sucesiones de nimeros reales y L, L1, Ly € R.
1) {zn} = L <= {|zn — L|} — 0. En particular, {z,} -0 <= {|z,]} — 0.
2) Si{xz,} — L, entonces {|z,|} — |L]|.

3) (Suma) Si {z,} — L1 y {yn} — Lo, entonces {z,, + yn} — L1 + Lo.

5) (Producto) Si {zp} — L1 y {yn} — Lo, entonces {z,yn} — L1Lo.

(

(

(

(4) Si{xzy,} estd acotada e {y,} — 0, entonces {z,y,} — 0.

(

(6) (Inverso) Si z,, € R* para todo ny {z,} = L € R*, entonces {1/x,} — 1/L.
(

)
)
)
)
)
)

7) (Cociente) Si {y,} = Lo y {zn} — L1 # 0, entonces {y,/xn} — La/L;.

Demostracién

(1) Es inmediato de la definicién de limite: {z,,} — L significa que |z, — L| — 0.

(2) Por la desigualdad triangular inversa, se cumple
[|n| = |LI| < |2n — L.

Si el segundo tiende a 0, también lo hace el primero, y por tanto |z,| — |L|. El
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reciproco es falso (ejemplo: x,, = (—1)").
(3) Si{zn} — L1y {yn} — L2, dado € > 0 se encuentran my,my € N tales que, si
n > max{mi, ms}, entonces

| — L1| <€/2 'y |yn— Lo| <e/2

Entonces
|(a:n —i—yn) — (Ll + LQ)‘ < ’.’En — L1| + |yn — L2| < E.

(4) Si {x,} estd acotada, existe K > 0 tal que |z,| < K para todo n € N. Dado que
{yn} — 0, entonces existe un m € N tal que, para n > m, se cumple |y, | < /K.
Por tanto, si n > m:

[Znyn| < Klyn| <e.

Esto demuestra que {z,y,} — 0.

(5) Para el producto, escribimos
TpYn — LiLe = (vp — L1)(Yn — L2) + (wn — L1) Lo + (yn — L2)L1.

El primer término tiende a 0 por el punto anterior (producto de acotada y conver-
gente a 0), y los otros dos tienden a 0 directamente. Concluimos z,y, — Lj Lo.

(6) Puesto que
ERTIty
z, L |zn||L]

bastard ver que 1/x, es acotada y aplicar el punto (6). En efecto, dado que
{z,} — L # 0, podemos tomar ¢ = |L| /2 > 0 para encontrar un m € N tal que, si
n > m, entonces |z, — L| < |L| /2. Esto nos da:

2| = [L — (L —2p)| > ||L] — |25 — L|| = |L| — |2y — L]
ol _ 11l

> || -
2 2

Tomando inversos, resulta

2
— <= n>m,
lzn| — |L]

lo cual nos dice que {1/z,} es acotada.

(7) Finalmente, {yn/zn} = {yn} - {1/zn} y aplicando los resultados de producto e
inverso obtenemos v, /x, — La/L1.
|

- J

| Ejemplo

s N

Problema. Estudiar la convergencia de la sucesion

n2—n

ay, = )
"9 p2

Resolucion. Hemos visto que la sucesion n no converge, por lo que en principio no
podemos usar directamente las reglas anteriores. Para sortear el problema, dividimos
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numerador y denominador por n:

n?—n _ 1—%
2 —n? %—1
Ahora, cuando n — oo tenemos
1-1 1
= — — =1
Z-1 -1

Por tanto, la sucesién converge a —1.

.

J

Discutimos a continuacién la relaciéon entre la convergencia de sucesiones y el orden de los
numeros reales. De forma mas intuitiva: jsi conocemos una desigualdad entre los limites de dos
sucesiones convergentes, podemos asegurar desigualdades entre sus términos a partir de cierto

punto? ;Y viceversa? La respuesta es afirmativa y se recoge en la siguiente proposicion.

Proposicién 2.11. Sean {z,} — L1 y {yn} — Lo dos sucesiones convergentes.

(1) Si Le < Ly, entonces existe m € N tal que y,, < x,, para todo n > m.

(2) Si existe m € N tal que z,, < y,, para todo n > m, entonces L < Lo.

Demostracion

(1) Supongamos que Lo < L,y sea e = % > 0. Por la definicién de limite, existen
m1, mae € N tales que

|z, — L1] < e para todo n > my, |yn — La| < & para todo n > ma.
Tomando m = méx{mi, ma}, para todo n > m se cumple
yn<L2+€:#:L1—€<xn.

(Recuerda que si z, — L, entonces para cada € > 0 se encuentra un m € N tal que
sin>m,setiene L —¢ <z, < L+¢.)
(2) Razonemos por reduccién al absurdo: si se tuviese Lo < Ly, aplicando el resultado
anterior existiria m € N tal que y, < x, para todo n > m. Esto significaria que
Ty < yn sblo podria cumplirse en un ntmero finito de indices n, contradiciendo la
hipétesis. Por tanto, necesariamente L1 < Lo.
|

Observaciéon importante: Es importante resaltar que la hipétesis estricta z,, < yn
para todo n > m no implica L; < Ls. Basta considerar, por ejemplo, x,, = 0, y,, = 1/n,
donde x,, < y,, siempre, pero Ly = Lo = 0.

-

J

Proposiciéon 2.12 (Teorema del saindwich). Sean {x,}, {yn}, {zn} sucesiones tales que existe
un m € N de forma que z,, <y, < z, para todo n > m. Si {z,,} — Ly {2,} — L, entonces

también {y,} — L.
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Demostracién

Observamos que el punto (2) de la Proposicién 2.11 no puede aplicarse directamente,
puesto que no sabemos si {y,} es convergente. Razonamos de la siguiente manera: dado
e > 0, existen mq, mo € N tales que

|z, — Ll <e (n>m), |z — L| <€ (n>ma).
Tomando m = max{m, my, ms}, para todo n > m tenemos
L—e<zp,<ypn<z,<L+e.

Por tanto |y, — L| < & para todo n > m, y concluimos que {y,} — L. [ |

.

| Ejemplo

e

Problema. Probar que

(~1)"n

a1 converge a 0.

Ty =

Resolucion. Observamos primero que

0< foal = = < 55 =

yva que n? + 1 > n? para todo n € N. Como {2} — 0, del teorema del sandwich (con
{zn} = {0} vy {2} = {1/n}) se sigue que

|zp] =0 = =z, —0.

N

| Ejemplo

e

Problema. (Hoja 2, ejercicio 3) Calcular

" n+k
i .
n—l>r-&r-loo kz::IHQ—I—]C

Resolucién. Para cada k se tiene n?> < n? + k < n? + n. Cuando el denominador es
mayor, la fraccién es menor, y viceversa, de modo que

>h=1(n +k) ~n+k _ Yioi(n+k)
< < .
n?+n Zn2+k - n?

k=1
Calculamos la suma del numerador:
° " 1 3 1
Z(n+k):n-n+2k:n2+mz “n?4 o
k=1 k=1 2 2 2
Sustituyendo:
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Por el criterio del sandwich,
n

B n+k 3
ngr—&I—looZHQ—i—k )

§

Concluimos esta seccién viendo que el supremo y el infimo de un conjunto A son puntos de R a
los que se puede llegar mediante sucesiones de elementos de A.

Proposicion 2.13. Sea A C R un conjunto no vacio.

(1) Si A estd mayorado, existe una sucesién {z, } de elementos de A tal que {x,} — sup A.

(2) Si A estd minorado, existe una sucesién {y,} de elementos de A tal que {y,} — inf A.

Demostracién de (1)

. <t 4 — « 1
Supongamos que A estd mayorado y sea s = sup A. Para cada n € N, como s — - no

es cota superior de A, existe x,, € A verificando

1
§— 5+ <xp < s.

Asi obtenemos una sucesion {z,} C A que converge a s usando el Teorema del séndwich.
El caso del infimo se razona de manera analoga. |

2.2 Sucesiones mondotonas

Vamos a introducir ahora una propiedad fundamental de las sucesiones: la monotonia. Veremos
que, si una sucesion es mondtona y esta acotada, necesariamente converge. Este hecho propor-
ciona un criterio muy util para estudiar la convergencia de sucesiones sin necesidad de calcular
explicitamente su limite.

A partir de aqui deduciremos el teorema de Bolzano—Weierstrass, que constituye uno de los
resultados més relevantes sobre sucesiones, y que ademas conduce al teorema de completitud de
R, ofreciendo asi una caracterizacién precisa de las sucesiones convergentes.

Definicién 2.14. Se dice que una sucesién {z,} es:
= Creciente si z, < x,41 para todo n € N.
= Decreciente si x,, > x,41 para todo n € N.
= Monétona si es creciente o decreciente.

Una sucesién constante es a la vez creciente y decreciente. Las sucesiones {n} y {—1/n} son
crecientes; {—n} y {1/n} son decrecientes. La sucesién {(—1)"} no es monétona. Ademas, {x, }
es decreciente <= {—x,} es creciente, por lo que podremos reducirnos a considerar sucesiones
crecientes cuando demostremos propiedades relacionadas con la monotonia.

Proposicion 2.15. Toda sucesién mondtona y acotada es convergente. Mas precisamente:

(1) Si{zy,} es creciente y mayorada, entonces {x,} — sup{z, : k € N}.

(11) Si{x,} es decreciente y minorada, entonces {x,} — inf{xy : k € N}.
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Demostracién

Supongamos que {z,,} es creciente y mayorada y sea [ = sup{xy : k € N}. Dado ¢ > 0,
por la definicién de supremo existe m € N con  — § < 2, < . Como la sucesién es
creciente, para todo n > m:

g
B_5<B_§§$m§xn§ﬁ<ﬁ+5v

de donde sigue que |z, — | < € y por tanto x,, — (3. El caso decreciente/minorada es
andlogo, o bien se aplica lo anterior a {—z,}. [ |

N

Ejemplo: Para x € R con |z| < 1, se tiene {z"} — 0.

Sea y = |z| € [0,1). Como |2"| = |z|* =y y 0 < y"*! < y" para todo n, la sucesién
{y"} es decreciente y minorada, luego converge. Si {y,} — L, también {y"*'} — L
por ser una subsucesién, y de la relacién 3" = ™ - y obtenemos que L = Ly.

Como y # 1, se deduce L = 0.
Entonces, {|z"|} — 0, lo que implica que {z"} — 0.

Observacién: Si |z| > 1, es facil ver que {z"} no esta acotada, por lo que no puede
ser convergente. El caso |z| = 1 es sobradamente conocido.

| Ejemplo

e

Problema. Sea {a,} una sucesién con a; > 3y an+1 = v/2a, + 3. Demostrar que es
convergente y calcular su limite.

Resolucién. (1) En primer lugar, veamos que {a,} asi definida es una sucesion
minorada. Para ello, probamos por induccién que a,, > 3 para todo n.

La etapa base es inmediata, ya que a; > 3. Supongamos ahora que a, > 3 para algtin
n € N. Entonces

ans1 = V2an +3>V2-3+3=1/9=3.
Queda a,, > 3 para todo n.

(2) Comprobemos ahora que {a,} es monétona decreciente. Veamos directamente
que ant+1 < an para todo n. Como a, > 3 > 0 para todo n € N, la desigualdad
an4+1 < ay equivale a

V2a, +3 < a, <= 2a,+3<d’ < a2 —2a,—3>0.

El polinomio p(x) = 22 — 22 — 3 tiene raices —1y 3, y p(z) > 0 para x < —1 0 x > 3.

Como ya sabemos que a, > 3, se cumple p(a,) > 0y por tanto a,41 < ay.

(3) Convergencia y limite. La sucesién es decreciente y minorada por 3, luego es
convergente. Sea L = lim,,_,  + a,,. Como {an+1} es una subsucesién de {a, }, también
se tiene {a,+1} — L. Tenemos entonces la igualdad:

L’=20L+3 < (L-3)(L+1)=0.

Como a, > 3 para todo n, no puede tenerse L = —1, por lo que se deduce L = 3.
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>0 >0

<0

\ J

Las sucesiones mondétonas aparecen con mucha mas frecuencia de lo que podria parecer. El
siguiente resultado lo pone de manifiesto y sirve de paso previo para el teorema central sobre
convergencia de sucesiones reales.

Lema 2.16. Toda sucesién de nimeros reales admite una sucesion parcial mondtona.

Demostracion

Sea {z,} una sucesién de nimeros reales y consideremos el conjunto

A={neN:x, >z, YVEEN},
que detecta los términos que son mayores o iguales que todos los que les siguen.
Distinguimos dos casos:

(1) Supongamos que A es infinito. Empezamos viendo que podemos construir una
aplicacién estrictamente creciente o : N — A. Esto es, que podemos numerar los
elementos de A de forma creciente.

Como todo subconjunto de N tiene minimo, podemos definir (1) = min A. Ahora,
daremos una férmula recursiva que nos permita obtener o(n + 1) a partir de o(n):

on+1)=min{a€ A:a>o(n)}.

#( porque A es infinito

La sucesion {z,,)} es parcial de {z,}, y como o(n) € A se tiene Ty(n) > To(n)+k
para todo k € N. Tomando k = o(n + 1) — o(n) obtenemos x4 () > Tg(n41), luego
{%s(n)} es decreciente.

(2) Si A es finito (posiblemente A = ()), entonces existe m € N tal que
AcC{neN:n<m}.

Intuitivamente, a partir del indice m siempre aparece mas adelante un término
mayor, lo que permite construir una sucesiéon parcial creciente.
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Definimos por induccién una aplicacién o : N — {n € N: n > m} asi: tomamos
o(1) =my, dado n > 2, tomamos

on+1)=o(n)+min{k € N:2,0)41 > Tom)}-

Entonces o(n +1) > o(n) > my T(n) < To(nt1), POT 10 que {74, } es creciente.

En cualquiera de los dos casos obtenemos una sucesién parcial mondtona de {z,}. W

L J

Teorema 2.17 (Teorema de Bolzano—Weierstrass). Toda sucesién acotada de nimeros reales
admite una sucesién parcial convergente.

Demostracion

Sea {z,} una sucesién acotada. Por el lema anterior, existe una sucesién parcial
monétona {xq(,)}. Al ser {x,} acotada, existe K € R tal que |r,[ < K para todo
n € N, y por tanto |7, (,)| < K para todo n. Asi, {x,(,)} es monétona y acotada, luego
es convergente por el resultado previo. |

Nota: Hasta ahora, hemos visto la siguiente cadena de implicaciones:

{z,} mondtona y acotada

4

{x,} convergente

4

{z,} acotada

4

{z,} admite una subsucesién convergente.

Sin embargo, ninguna de estas implicaciones es reversible:

(1) Para ver que (iv) # (iii) basta tomar

1+ (=1)"
xn—n<+(2)>, n €N,

ya que xo,—1 =0y x9, = n. Asi, {z,} admite una subsucesién convergente y otra
no acotada, por lo que {x,} tampoco estd acotada.

(2) Ya se coment6 que existen sucesiones acotadas que no convergen, es decir, (iii) 7
(id).

(3) Finalmente, la sucesién {(—1)"/n} converge a 0, pero no es monétona, asi que
(i0) 7> (2)-

. J

Hasta ahora hemos visto condiciones necesarias (como la acotacién) o suficientes (monotonia
junto con acotacién) para garantizar la convergencia de una sucesién. Sin embargo, ninguna de
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ellas es a la vez necesaria y suficiente. Nuestro objetivo serd encontrar un criterio que permita
decidir si una sucesion es convergente sin necesidad de conocer de antemano su posible limite.

Definicién 2.18. Una sucesién {z,} se llama sucesion de Cauchy cuando, para todo € > 0,
existe m € N tal que
pg>m = |z, — x4 <e.

Es decir, una sucesién de Cauchy es aquella cuyos términos estan arbitrariamente cerca unos de
otros para indices suficientemente grandes. Es facil comprobar que toda sucesion convergente
verifica esta propiedad, pues todos sus términos estédn tan cerca como se quiera del valor del
limite. Que la afirmacién reciproca sea también cierta caracteriza a la completitud de R.

Proposicién 2.19 (Completitud de R). Una sucesién de nimeros reales {z,,} converge si, y
solo si, es de Cauchy.

Demostracion

’ Convergente = Cauchy. ‘ Supongamos z,, — L € R. Dado € > 0, existe m € N tal que

Ty — L <E ara todo n > m.
9 p
Entonces, para p,q > m,
€ €
‘xp*xq‘§|5Cp*L’+|L*xq|<§+§:57

luego {x,} es de Cauchy.

’ Cauchy = convergente. ‘ Sea ahora {z,} una sucesién de Cauchy. Primero probamos
que esta acotada. Tomando € = 1 en la definicién de Cauchy, existe m € N tal que

|z, —x4] <1 para cualesquiera p,q > m.
En particular, con g =myp=n>m,
[Zn| < |2n — Zm| + [Tm] <1+ |20l

de modo que {z,} es acotada.

Por el teorema de Bolzano—Weierstrass, existe una sucesién parcial {7, ()} que converge
a algin L € R. Veamos que entonces también se tiene {z,,} — L.

Sea £ > 0. Como {z,} es de Cauchy, existe m; € N tal que

3

p.g>my = |z, — x4 < 7 (2.1)
Como {z,(n)} — L, existe mz € N tal que

n>my = |Tem — L] < % (2.2)
Tomemos m = max{mi, ma}, y sea n > m. Puesto que o(n) > n > m, aplicando (2.1)

conp=nyq=o(n)y luego (2.2), obtenemos
£ €
‘-rn - L| < |5Un - xa(n)| + ‘xa(n) - L| < 5 + 5 =&

Por tanto, {z,,} — L, como queriamos. [ |
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| Ejemplo

s N

Problema. Consideremos la sucesion definida por

2
) n € N.

In

1
1 = 2, Tn+1l = 2<$n +

Vamos a demostrar que {x,} es una sucesién de Cauchy en Q que no es convergente.

Resolucion.
= Comenzamos viendo por induccién que z,, € Q para todo n.

El caso n = 1 es claro. Si x,, € Q, entonces también 2/x, € Q y su media
aritmética %(mn + %) =xpr1 € Q.

T

» Demostremos ahora que se cumplen las estimas v2 < z,, < 2 para todo n.

Para n = 1 tenemos V2 < 2 = 1 < 2. Supongamos que V2 <, <2 para algin
n € N. Entonces

1 2 1 1 2 V2
S = 2 24+ ) =1+ 2" <2
Patl 2(x"+xn> 2<+ ) 2(*@) I

Por otro lado, usando la desigualdad entre las medias aritmética y geométrica,
esto es, a;b > vab para todo a,b > 0 (véase la nota al final de este ejemplo), se

tiene
1
T+l = Tp + — \f
2 xn

Queda probado que v2 < z,41 < 2.

» Comprobamos que {z,} es mondtona decreciente: como x,, > V2 > 0, se tiene
2
T 22y

2 xy? 1 2 1
— < — =2 = Tpr1 =5 T+ — ) < S(Tnt+T0) = 700
2 T, 2
Por ser {z,,} decreciente y minorada, existe L € R, L > /2, de forma que {x,} — L.
En particular, {z,} es una sucesiéon de Cauchy.

= Por tultimo, calculamos el valor de L. Pasando al limite en la relacién de recu-

rrencia,

1 2 2
L=-(L+= 2L =L+ = L*=2.
2( +L) = +7 =

Como L > /2, se obtiene L = /2.

Conclusién. {z,} es una sucesién en Q decreciente y acotada, por tanto convergente
en R. Toda sucesién convergente es de Cauchy, y esta nocién es independiente del
limite, luego {z,} es una sucesién de Cauchy en Q. Sin embargo, su tinico limite posible

es V2 ¢ Q, luego {z,,} no converge en Q.

La desigualdad entre la media aritmética y la geométrica: Sean a,b > 0.
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Claramente, (a — b)? > 0, lo que nos da
a?+b>>2ab = a®>+b>+2ab>4dab = (a+b)2 > 4ab.

Como a,b > 0, podemos tomar raices cuadradas para conseguir

atb>ovab = “;Lbz\/%.

2.3 Sucesiones divergentes

En este curso, llamamos sucesion divergente a cualquier sucesién que no sea convergente. Es
menester senalar que en algunos textos, esta terminologia se reserva para un tipo concreto de
sucesiones no convergentes, que son las que tienden a +00 0 —oco.

Definicién 2.20. Una sucesién {x,} se dice divergente cuando no es convergente.
Entre las sucesiones divergentes, senalamos los dos tipos maés interesantes:
Definicién 2.21. Sea {z,} una sucesién de niimeros reales.

» Decimos que {x,} diverge a +oo si, para todo K > 0, existe m € N tal que n > m —
xn, > K. En tal caso escribimos {z,} — +o0.

» Andlogamente, decimos que {z,} diverge a —oo si, para todo K < 0, existe m € N tal
que n > m = xz, < K. En tal caso escribimos {z,} — —o0.

Conviene insistir en que 0o, +00 y —oo son solo simbolos para indicar que una sucesion diverge
hacia los positivos o los negativos. Escribir {z,} — 400 no significa que la sucesién sea
convergente ni que tenga limite +o0. Las nociones de sucesion convergente y de limite real
no cambian por introducir estas definiciones. Por ello deben evitarse expresiones como “{z,}
converge a +00” 0 “limy_, 100 T, = +00”, que pueden inducir confusién y no aportan claridad.

Estudiamos ahora la relacién entre las sucesiones que divergen a oo con los demaés tipos de
sucesiones que hemos visto.
Proposicién 2.22. Sea {r,} una sucesion y {7} una subsucesiéon de {z,}.

(1) Si {xp} — +o0, entonces {Ty(,)} — +00.

(1) Si {zn} — —o0, entonces {T, ()} — —0o0.

Demostracion

(1) Sea K € R. Como {z,} — 400, existe m € N tal que n > m = z, > K. La
aplicacién o : N — N es estrictamente creciente, luego existe ng € N con o(n) > m
para todo n > ng. Por tanto, para n > ng se tiene 4,y > K, y queda probado
que {Zy(n)} — +00.

(2) Si {z,} — —oo, entonces {—xz,} — +4oo. Aplicando (i) a la sucesion {—z,}
obtenemos {—z,(,)} — +00, es decir, {Ty(n)} — —oo.
|
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Proposicién 2.23. Si {z,} creciente y no mayorada, entonces {z,,} — +00. De la misma
manera, si {x,} es decreciente y no minorada, entonces {x,} — —oo. Por tanto, toda sucesién
mondtona es convergente o tiende a infinito.

Demostracion

Si {x,,} es creciente y no mayorada, dado K € R, existe m € N tal que z,, > K, pero
entonces, para n > m se cumple x,, > x,, > K, y de aqui {x,} — +00.

De modo andlogo, si {x,} es decreciente y no minorada, entonces {—x,} es creciente y
no mayorada, luego {—xz,} — +o00, y por tanto {z,} — —oc. [ |

El criterio anterior nos permite dar ejemplos de sucesiones que divergen a 4oo:

» Siz € R con z > 1, la sucesiéon {z"} es creciente y no estd mayorada, luego
{z"} = +o0.

» Siz < —1, entonces {|z"|} = {|z|"} — +00. Sin embargo, la sucesién no tiende
ni a 400 ni a —oo, pues oscila de signo.

\ J

| Ejemplo

s N

Problema. Demostrar que {\/n} — 4o0.

Resolucion. Creciente. Como 0 < n < n + 1, tomando raices cuadradas queda
Vi < v/n+ 1, luego es creciente.

No mayorada. Razonamos por reducciéon al absurdo: si existiera M € R tal que
vn < M para todo n € N, entonces n < M? para todo n € N, lo cual contradice la
propiedad arquimediana.

Por tanto, la sucesién es creciente y no estd mayorada; en consecuencia,

{vn} — +oo.

\ J

El siguiente criterio nos permite deducir que una sucesién que diverge a +0co comparandola con
otra con el mismo comportamiento. Puede entenderse como un resultado andlogo al Teorema
del sdndwich para este tipo de sucesiones divergentes.

Proposicién 2.24. Sean {z,} y {yn} sucesiones de niimeros reales tales que existe un m € N
de forma que x, < y, para todo n > m. Entonces:

{zn} = +oo = {yn} — +o0, {yn} = —00 = {x,} — —oc.

| Ejemplo

e N

Problema. Consideremos la sucesién

tE vk BRSO ARVO R VE R

Demostrar que {z,} — +o0.
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Resolucion. Para 1 < k < n se cumple VEk < V/n, luego

v

Sl
El

Sumando para k=1,...,n,

n
=Y
k=1

1 1

L |
kzgﬁ:n'ﬁ:ﬁ'

S

Como {y/n} — +oo, por comparacién se obtiene {z,} — +o0.

. J

Finalmente, resumimos el dlgebra del 00 en la siguiente proposicién.

Proposicién 2.25. Sean {z,} y {yn} sucesiones de niimeros reales.

(1) Si{xn} — +o0y {yn} estd minorada, entonces {x,, + y,} — +o0o. En particular, la segunda
condicién se tiene si {yn,} — L o {yn} — +o0.

(2) Si{zn} - —ooy {yn} estd mayorada, entonces {z, +y,} — —oo. En particular, la segunda
condicién se tiene si {y,} — L o {y,} = —o0)

(3) Si{zp} — +o0 y existen @ > 0y m € N tales que, para n > m, se cumple y, > a > 0,
entonces {zpyn} — +00. En particular, la segunda condicién se tiene si {y,} = L >0 o
{yn} = +oo.

(4) Si {x,} - —oo y existen @ > 0 y m € N tales que, para n > m, se cumple y, > a > 0,
entonces {zpy,} — —0o0.

1
(5) Sea x,, # 0 para todo n € N. Entonces {z,} — 0 <= {’} — +00.
Tn

Demostracion

(1) Supongamos {z,} — 400y {yn} estd minorada. Existe a € R tal que y,, > « para
todo n € N. Sea K € R. Como {z,,} — +00, existe m € N tal que n > m =
r, > K — «a. Entonces, para n > m, se cumple z,, +y, > K —a+ a = K, lo que
prueba que {z, + yn} — +00.

(2) La demostracion es analoga a (1).

(3) Sea K € R. Como {x,} — 400, existe ¢ € N tal que para todo n > ¢ se
cumple z,, > K/a. Definimos p = méx{q, m}. Entonces, para n > p, se tiene
simultdneamente y, > oy x, > K/, luego

xnyn>§a:K7

lo que prueba que {z,y,} — +o0.

(4) Demostracién andloga a (3).

(5) Supongamos que {x,} — 0, y sea K € R". Como {x,} — 0, existe m € N tal que
n>m = |z,| < % Entonces, para n > m se cumple

1
— > K,
|z
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lo que muestra que {ﬁ} — +00.

Reciprocamente, supongamos que {1/ |z,|} — +00. Dado ¢ > 0, tomamos K = 1/¢.
Por hipoétesis, existe m € N tal que n > m = |1/z,| > K = 1/¢. Esto equivale
a |x,| < e, lo que prueba que {z,} — 0.

|

\ J

Las situaciones no contempladas en la discusion anterior se conocen como indeterminaciones,
que es un término que se usa para denotar que no existe un criterio general que nos permita decidir
el comportamiento de la situacién en ese caso. Tenemos principalmente dos indeterminaciones,
una para la suma y otra para el producto:

[00 —o0] [0 00],

si bien la indeterminacién para el producto puede aparecer en dos variantes aparentemente
diferentes: [0 /0] y [oo/o0].

-

Es interesante observar que cualquier sucesion puede expresarse en forma de las dos
indeterminaciones mencionadas anteriormente:

» Dada una sucesién {z,}, podemos escribir z, = x, + yn, con {z,} — +oc e
{yn} — —oco. Basta definir x,, = z, + |zn| + n € y, = 2z, — x,, de modo que
Tp2>n—+o0ey, < —n— —0o0.

» De igual forma, cualquier sucesién {z,} puede escribirse como z, = z,y,, con
{zn} = +0 e {yn} — 0. Por ejemplo, tomando x,, = n(|z,| + 1) € yn = 25 /xn,
se cumple z, > n — +o0 y |yn| <1/n — 0.

2.4 Criterios de convergencia de sucesiones

El siguiente tema tiene un enfoque practico, pues presentaremos dos criterios para resolver tipos
concretos de indeterminaciones.

Para las indeterminaciones del tipo [0o/o0], es 1til el siguiente criterio ideado por el matemético

austriaco O. Stolz, cuya demostracion es altamente técnica y preferimos omitir.

Teorema 2.26 (Criterio de Stolz). Sea {p,} una sucesién de nimeros positivos, estrictamente
creciente y no mayorada (es decir, 0 < pn, < pn+1, ¥ {pn} = +00).

Entonces, para toda sucesién {z,} y todo L € RU {400, —c0}, se tiene

{m”“_m”} L — {’””}—> L
Pn+1 — Pn Pn

| Ejemplo

s 3

Problema. Demostrar que, para cualesquiera x € R con |z| > 1y p € N,
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Resolucién. En primer lugar nos damos cuenta de que basta con tratar el caso x > 1,

pues
np

R

np

on
y |z| > 1. Haremos una demostracién por induccién en p € N, aplicando el criterio de
Stolz con p, = zP (que es positiva, estrictamente creciente y no mayorada).

Etapa base p = 1. Tomamos x,, = n. Entonces

xn+1—xn:(n+1)—n: 1 o
Pn+1 = Pn gl —gn z"(z —1)

n
y por Stolz se concluye — — 0.
x

p
Paso inductivo. Supongamos cierto para un p € N, es decir, —- — 0. Tomamos ahora
x

x, = nPT!. Entonces

Tpp1 — 2T (n+ 1P+t — pptl 1 (n+ 1)PTL —prtl pp

Pntl — Pn antl — gn x—1 np xn

Usando el binomio de Newton, podemos ver que (n + 1)P*! = nPT1 4 (p 4+ 1)nP + R(n),
donde R(n) es un polinomio de grado < p. Por tanto
(n+ )P —pPtl  (p4+1)nP + R(n)

nlgnolo npb - npP =P + L.

Por otro lado, el tercer factor tiende a 0 por hipétesis de induccién. Por tanto, el
producto también tiende a 0. Aplicando de nuevo el criterio de Stolz, concluimos que

p+1
{n } — 0.
xn

Ahora, si {x,,} es una sucesién de nimeros reales positivos, vamos a estudiar el comportamiento
de la sucesién { /Z,}. Esto anticipa un nuevo tipo de indeterminacién, la del tipo [0c?], que
estudiaremos con mas atencién una vez que hayamos introducido las funciones logaritmo y
exponencial.

N

Teorema 2.27 (Criterio de la raiz para sucesiones). Sea {z,} una sucesién con x, > 0 para
todo n € N. Entonces, para L € RU {+0o0}, se tiene

{$n+1}—>L = {¥z,} — L.

Tn

| Ejemplo

s N

Problema. Probar que Vn!l — 400.

Resolucion. Consideramos x,, = n!, con x, > 0. Entonces

1!
Tnp1 _ (n+1) 41— 400,
Tn n!
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Por el criterio de la raiz para sucesiones, concluimos que

Wﬁ—i-oo.

Nota: n! =n(n—1)---2- 1= k=n-(n—1)




Capitulo 3

Series

Al estudiar una sucesién de nimeros reales {x,} surge de forma natural una nueva idea: la de
sumar todos sus términos. Para ello podemos considerar las sumas finitas

X, (:C1+:L‘2)7 ($1+$2+IE3), sy ($1+$2++£Bn),

Si esta nueva sucesién converge, es plausible interpretar su limite como la suma infinita de los
términos de {x,} a la que querfamos dar sentido.

Definicién 3.1. Dada una sucesién de ntiimeros reales {x, }, la serie de término general {x,}
es la sucesién de sumas parciales

{Sn} = zn: Tk ¢
k=1

v la denotaremos simplemente Z Tp.

n>1
Con esta definicién queda claro que las series no son un objeto nuevo; son sucesiones cuyo
término general se obtiene sumando los términos de otra sucesiéon. Por tanto, podemos hablar
de nociones como convergencia, acotacién y monotonia de series simplemente trasladando las
correspondientes definiciones para sucesiones.

Definicién 3.2. Decimos que la serie Y, <, x,, es convergente si {S,} converge; en tal caso
llamamos a su limite la suma de la serie, y lo denotamos por

o0
lim S,, = E T
n=—oo m

n=1

que recuerda la idea de que estamos sumando los infinitos términos de la sucesién {x,,}.

En el estudio de una serie intervienen dos sucesiones, asi que conviene fijar una notacién que
indique claramente a cudl nos estamos refiriendo. La sucesién cuyos términos estamos sumando,
{z,,}, la llamaremos término general de la serie, y los propios términos de la serie Y, <
se denotaran las sumas parciales {S,}. Como ya hemos mencionado, al limite de la serie lo
llamaremos suma de la serie, también para diferenciarlo del posible limite de {x,}, del que
hablaremos enseguida.

Por tanto, si decimos que )_,,~; Z,, es una serie de términos no-negativos, nos referimos a que

Ty > 0 para todo n € N. Esta propiedad se traduce inmediatamente en que la sucesiéon de sumas
parciales es creciente.

45
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3.1 Ejemplos de series

Acabamos de ver que toda serie es, por definicién, una sucesién. Ademas, el reciproco también
es cierto: cualquier sucesién puede verse como una serie. Por tanto, series y sucesiones no son
mas que dos puntos de vista diferentes para estudiar el mismo concepto matemaético. La utilidad
del primero quedara de manifiesto mas adelante.

Dada una sucesién {y,}, adoptamos por convenio yo = 0 y definimos
Tn =Yn —Yn-1 Vn €N,

Entonces
n n
Sn=> ap= (r—yr—1) =1+ @2—y)+Ws—y2)+ - Yn=yYn YneN
k=1 k=1

Asi, estudiar la sucesion y,, equivale a estudiar la serie », - (yn — Yn—1)-

Merece la pena dar un nombre a las series cuyo estudio se reduce a considerar una tnica sucesién
en la forma que hemos discutido anteriormente.

Definicién 3.3. Diremos que una serie ) - x, es telescopica si su término general puede
escribirse de la forma
Ty =Yn+l —Yn VN > 1.

para alguna sucesién {y, }. En ese caso, el estudio de >, - =, equivale al de {y,4+1 — 1}

| Ejemplo

s N

Problema. Estudiar la convergencia de la serie de Mengoli

1
Zn(n—l—l)'

n>1

Resolucion. Observamos que

1 1 1

nn+1) n n+1

Por tanto, las sumas parciales son

" /1 1 1
S, = -] =1- .
;(k k—l—l) n+1

Luego {S,} — 1y la serie es convergente con

> 1
2

n=1

.

Si bien series y sucesiones son conceptos equivalentes, muchos de los ejemplos de sucesiones mas
importantes que apareceran en el Anélisis Matematico vienen en forma de series. A menudo, no
hay una forma cémoda de obtener una férmula general para la sucesién de sumas parciales de
una serie, por lo que nos centraremos en la informacién sobre la serie ), ~; x, que podamos
obtener a través de su término general {z,}. -
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Un primer hecho bésico es que, si {2, } no converge a 0, la serie 3, - 2, no puede ser convergente.
De forma equivalente:

Proposicién 3.4. Si la serie Y, -, , es convergente, entonces {x,} — 0.

Demostracion

Sea S, = Y p_;x la sucesién de sumas parciales. Si la serie converge, entonces
{S,} — S € R. Para n > 1, podemos escribir

:Iin+1:Sn+1—Sn—>S—S:O,

luego {z,,} — 0. [ |

\ J

En términos de sucesiones, tendriamos que necesariamente la sucesién de diferencias {y, —
Yn—1} — 0 (0 equivalentemente {y,+1 — yn} — 0). Es natural preguntarse por el reciproco, esto
es, si {ynt+1 — yn} — 0 implica que {y,} es convergente. Esta es una pregunta interesante sobre
sucesiones que no nos habriamos hecho de no haber adoptado el punto de vista de las series.

Naturalmente, el reciproco es falso: {z,} — 0 no es suficiente para que >, < x, sea convergente.
Veremos enseguida un ejemplo importante.

Proposicion 3.5. La serie armonica
>

n>1 n

diverge positivamente.

Demostracién

Sea {H,} la sucesién de sumas parciales, esto es,

Como % > 0, la sucesién {H,} es creciente. Probamos que no estd acotada mostrando,
por induccién en n € N, que

n
Para n =1 es claro: 1 1
Hy=14+4-=14—-.
2 + 7 + 5

Supuesto cierto para n, entonces
20 1 +1
n n
Hyni1 = Hon - 2> 1+ = 22" —2M). =1 .
gt 2+k§+1k_<+2>+( ) g = 1+

Concluimos que Han — +00, por lo que {Hy,} no esta acotada. Como ademés es {H,,}
creciente, tenemos también H,, — +o0. |

N J

Fijado x¢ € R, puede interesar que las sumas parciales de una serie arranquen en xg, esto es, en
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n = 0. Denotamos por ), -2, a la serie cuyas sumas parciales son

n—1 n
Sn = ka = ka,l, n>1.
k=0 k=1
En vista de la identidad anterior, esta claro que }_,~o%n = > ,>1 Zn—1, ¥y se cumple

§n+1 :wO_"STw n = 17

de donde es claro que la convergencia de }_, -2y, equivale a la de 3°, -, p,, y si ambas son
convergentes se tiene ademas

[e.e] o0 oo
nILHgOSn: Zazn: an,l =x0+ Zzn
n=0 n=1 n=1

Definiciéon 3.6. Dado a € R, llamamos serie geométrica de razén a a

dah=1+a+a’+--
n>0

cuyo término general es {a"}.
Como a" — 0 solo si |a| < 1, una condicién necesaria de convergencia es |a| < 1. Vemos

inmediatamente que el reciproco también es cierto:

Proposiciéon 3.7. Si |a| < 1, la serie geométrica de razén a es convergente y

[e.9]

E a" =
n=0
Demostracion

Paran € Ny a # 1, la formula de la suma de los n primeros términos de una progresion
geométrica es de sobra conocida, y puede demostrarse facilmente por induccion:

Za 1—a"

1—-a

Si |a| < 1 entonces {a"} — 0, y por tanto

0o _

, ., 1—a" 1
g a” = lim E a¥ = lim —— = .
n—o00 n—oo 1 —q 1—a
n=0 k=0

. J

También resulta util poder cortar los primeros términos de una serie. Fijado p € N, la serie
> n>p+1 Tn 1O €s mas que la sucesién de sumas parciales

ptn

= > ap= mep,

k=p+1
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de modo que estamos considerando la serie }, 1 Zn+p. Las sumas parciales de 3>, 1 Tn ¥
> n>1 Tn satisfacen la relacion

p+n
Sp= > @ =Spin— Sy,
k=p+1

de donde es evidente que >, .1 T, converge si, y solo si, converge »_,,~1 Tn, y en tal caso, sus
sumas verifican

0 P 00
Z Ty = Z T + Z Ty
n=1 k=1 n=p+1

En resumidas cuentas, el cardcter de una serie (convergente o divergente) no cambia al
eliminar un ndmero finito de términos.

Ejercicio: Demostrar que si ) ,,~; x,, es convergente, entonces las colas

o

>

k=n+1 neN

forman una sucesién que converge a 0.

. 4

Una sencilla consecuencia del algebra de sucesiones convergentes nos permite ampliar facilmente
nuestro catdlogo de series convergentes.

Proposicién 3.8. Sean )~ Tn ¥ >.,>1 Yn series convergentes y «, 3 € R. Entonces la serie
Zn21(a$n + Byn) es convergente y

0o 00 00
Z(awn+ﬁyn) = O‘an‘FBZyW
n=1 n=1 n=1

Demostracion

Para n € N, definimos

n

n n
Xn = Zxk’ Yo = Zyk’ Z”:Z(axk’_‘_ﬁyk) = aX, + pY,.
k=1 k=1 k=1

Como {X,} y {Y,} convergen, también converge {Z,} y
lim Z, =« lim X, + 6 lim Y,,.
n— 00 n— 00 n—o0

Esto prueba la convergencia de 37, - (ax, + By,) y la identidad anunciada. |
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| Ejemplo

s N

Problema. Demostrar que la siguiente serie es convergente y calcular su suma
9 n—1 + 3n+1

n
n>1 5

Resolucion. Por linealidad de las series y la férmula de la geométrica:

on=ly4 gntl 1 2\l 9 3\t 1 1 9 1 1 9 29
S =2 (5) +5§<5) “5T-ZT5T-f 372 6

_2
n>1 n>1 5

ol

\ J

3.2 Criterios de convergencia para series de términos no nega-
tivos

En lo que sigue trabajaremos con series de la forma }, -1 a, con a, > 0. Este tipo de series

son sucesiones crecientes, ya que Sp1+1 = Sp + an4+1 > Sp para todo n € N, lo que simplifica su

estudio. De hecho, hemos visto que una sucesién creciente solo puede ser convergente o divergir
a +0o, dependiendo de si estd mayorada o no.

Z a, converge <= {S,} estd mayorada.
n>1

Por tanto, de la convergencia de una serie podemos deducir la de muchas otras a las que esta
mayora.

Proposicién 3.9 (Criterio de comparacion). Sean >, 1 an y >_,,>1 by dos series con a, > 0,
b, > 0. Supongamos que existe p € N tal que a,, < b, para todo n > p. Entonces,

Z b, convergente — Z an convergente.
n>1 n>1

Demostracion

Por ser },,~; b, convergente, estd mayorada, es decir, existe M € R tal que

> by <M VneN.
k=1

Sumando término a término la desigualdad 0 < ap4, < by, para k =1,...,n, se tiene

n+p

n n
Za/ﬂ—i—p < Zbk+p < Zbkz <M.
k=1 k=1 k=1

Al estar mayorada, la serie -, -1 antp = > ,>,+1 an €s convergente, lo que equivale a
la convergencia de la serie ), < a. |

\ J

Si bien el anterior criterio de comparacién tiene utilidad en si mismo, su principal funcién es
permitirnos demostrar el siguiente, que es més potente y practico.
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Proposiciéon 3.10 (Criterio de comparacién por paso al limite). Sean a,, > 0y b, > 0 para
todo n € N, y supongamos que

(1) Si L >0, 32,5 a, converge <= 3,4 b, converge.

(2) Si L=0y 3,51 by converge = 3_, - a, converge.

Demostracion

(1) Tomando € = L/2, encontramos un ng € N tal que, para n > no,

an L L 3L
— — — < < —
b, L.<2 — an_an_2bn.

Aplicamos el criterio de comparacion entre >, - %bn Y 2n>10n, y luego entre
Yon>1an Y Dop>1 %bn, teniendo en cuenta que multiplicar una sucesién por una
constante positiva no afecta a su convergencia.

(2) Tomemos ¢ = 1. Entonces existe ng tal que, para n > ng, Z—: < 1, es decir,

0<ay <by,. Si) b, converge, también lo hace >, ~; a, por el primer criterio
de comparacion.

Nota: Si a, > 0 para todon € Ny {‘;—:} — +00, entonces {Z—:} — 0. Aplicando el
punto (2) intercambiando los papeles de 37, -1 an ¥ 3,51 by, tenemos:

si Z a, converge — Z b, converge.
n>1 n>1

Por contrarreciproco, esta afirmacién es equivalente a

si an diverge — Zan diverge.

n>1 n>1

\

| Ejemplo

e

Problema. Estudiar la convergencia de la serie

Z -
5 .
n21n +3n+4

; 1
Resolucién. Tomamos b, = —. Entonces
n

n 2
Qp, n24+3n+4 n
bn, = n? + 3n + 4 (>0)

n

Por el criterio de comparacién por paso al limite, la serie dada converge si y sélo si lo

hace >, %, que es la armoénica y diverge. Luego ), < m diverge positivamente.
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| Ejemplo

s N

Problema. Para p € N con p > 2, la serie armdnica con exponente p es convergente.

1

'R
n>1 n

Resolucion. En primer lugar, veamos que podemos reducirnos al caso n = 2: si p > 2
y n € N, entonces de n? > n? se sigue que

Por el criterio de comparacion, si ), # converge entonces también lo haran las de
exponente p para todo p > 2.

1
Sea b, = ﬁ Sabemos que la serie de Mengoli )~ b, es convergente, y se
n(n =
verifica )
= 1 1
In o :”(“’; ):1+f—>1(>o).
bn, — n n
n(n+1)

Por el criterio de comparacion por paso al limite, ), ~ # converge.

Observacion. Que la convergencia de dos series sea equivalente no significa en absoluto
que tengan la misma suma. Los criterios de comparacién miran el comportamiento
asintdtico (para n grandes), mientras que la suma depende de todos los sumandos,
incluidos los primeros. En particular, por comparacion, las series

1 1

Zﬁ Y Zn(n—i—l)

n>1 n>1

son asintéticas la una a la otra (su cardcter es equivalente), pero sus sumas no coinciden:

00 1 o q 2
Zﬁ:L 27:%
n:lnn n:ln

(La segunda igualdad requiere herramientas més avanzadas; por ejemplo, series de
Fourier.)

\ J

Teorema 3.11 (Criterio de la raiz para series). Sea a,, > 0 para todo n € N y supongamos
que {/a,} — L > 0.

(1) Si L > 1, entonces {a,} - 0, y la serie 3, > a,, diverge positivamente.

(2) Si L <1, entonces la serie ), ~; a, es convergente.
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Demostraciéon

(1) Comprobemos que si {a,} — 0, entonces necesariamente L < 1. En efecto, si
an, — 0, existe m € N tal que, para n > m, se tiene 0 < a,, < 1, luego

Ya, <1 VYn>m.

Pasando al limite, tenemos L < 1, como se buscaba.

(2) Tomando € > 0 de forma que 0 < L+ ¢ < 1 (por ejemplo, ¢ = %)

un m € N tal que, para n > m, se tiene

, encontramos

|Va, — Ll <e = Ya,<(L+e) = a,<(L+e)".

La serie geométrica 3_, -1 (L + €)™ converge, ya que 0 < L +¢ < 1, de modo que
también lo hace >~ a, por el primer criterio de comparacion.

Nota: Si L =1, el criterio anterior no decide:

1 1 1 1
{"n}%ly ngiverge, {"#}%ly Zﬁconverge.

n>1 n>1

. J

La combinacién del criterio anterior junto al criterio de la raiz para sucesiones nos da el siguiente:

Proposicién 3.12 (Criterio del cociente o de d’Alembert). Sea a,, > 0 para todon € Ny
supongamos que
{an+1 } — L>0.
anp,

(1) Si L > 1, entonces a,, + 0, luego la serie 3°, > a,, diverge.

(2) Si L <1, entonces la serie ), -, a, es convergente.

| Ejemplo

s ~

Problema. Fijados ¢ € Ny x € R con x > 1, la serie

nq
2

n>1
es convergente.
nq
Resolucion. Sea a, = —. Entonces
T
a n+1)4 1 1\¢ 1
nt_ (n 1) =<1+) o<1,
an, nix x n x

Por el criterio del cociente, la serie ), - a, es convergente.

En particular, {a,} = {Z—Z} — 0, que es un resultado de sucesiones que tuvimos que
demostrar por inducciéon usando el criterio de Stolz.
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Ejercicio: Para a € R con |a| < 1, calcula la suma de las series

Zna", Zn(n—l)a” y Zn%".

n>1 n>1 n>1

\

Aunque a priori puedan parecernos criterios equivalentes, no es dificil comprobar que el criterio
de la raiz puede decidir casos en los que el del cociente no lo hace. Consideremos

San gD

n>1 2"
Para n € N,
Y3+ (—1)n % si n es impar,
Vn = 2 v g
-5~ sinespar.

En ambos casos { {/a,} — é < 1, luego, por el criterio de la raiz, la serie es convergente. Sin
embargo,
ant1 3+ (=)t 1 sin esimpar,
an  2(34+(=1)") 1 sines par,

de modo que el criterio del cociente no puede aplicarse.

| Ejemplo

>

Problema. Estudiar la convergencia de la serie

(n})?

(2n)

Resolucion. Sea a, = . Claramente a, > 0 para todo n € N, y podemos

considerar el cociente

a1 (+DN2ER)! (4 1)(n+1)  nP42n+1 Ll
an  (2n+2)!(n)2  2n+2)(2n+1)  4n2 +6n + 2 4 =

Por el criterio del cociente, la serie es convergente.

. J

Proposicién 3.13 (Criterio de condensacién de Cauchy). Sea {a,} una sucesién decreciente
con a, > 0 para todo n € N. Entonces

Z a, converge <= Z 2™aon converge
n>1 n>0

Demostracion

FEsta demostracion no se vio en clase.
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.

Consideramos las sumas parciales de cada serie:

n n—1
An=>ar, Bu=)Y 2"ap neN
k=1 k=0

Empezamos mostraremos por inducciéon que, para todo n € N,
AQn_1 < Bn < 2A2n71. (1)
A partir de esta cadena de desigualdades deduciremos facilmente que {4,} estd

mayorada si y solo si lo estd {B,}.

Etapa base n = 1. Se tiene A1 = a1 < a1 = B < 2a1 = 2A4;.
Paso inductivo. Supongamos que 1 es cierta para n. Por ser {a,} decreciente, se
tiene que j < 2" <k = aj < asn < aj, y deducimos que:

2ntl_q 2n
> oap < 2% =2-2"agm < 2 ) ay, (2)
k=2n j:2n—1+1

donde hemos usado que la suma del primer miembro tiene 2" sumandos, y la del Gltimo
tiene 2"~ 1. Usando la hipétesis de induccién y (2) tenemos

antl_q
Agnii_y =Agn_1+ Y ap < Ay + 2% < By +2"agn = By,
k=2"
y también
2n
Bni1 = By +2"%agn < 2A9n_1 + 2"agn < 2| Agn_1 + Z a; | = 2A9n.
j:2n—1+1

Como {4, } y {B,} son crecientes, A,, < Aan_; < By, luego {A,} estd mayorada si
lo estd {B,}. Reciprocamente, si {A,} estd mayorada, entonces también lo esta su
subsucesién Ayn-1, y por tanto B,,. |

Idea de la demostracion anterior

FEsta demostracion no se vio en clase.

La clave son las dos estimaciones que se obtienen de la monotonia decreciente de {ay,}:

on+1_ 1 on
Z ap, < 2"agn, 2Maon < 2 Z a;.
k=2n j=2n—141

La primera condensa: en el bloque de 2™ sumandos sustituimos cada uno por el mayor
del bloque, asn. La segunda descondensa: repartimos el tinico término 2™as» en una
suma de 271 términos, cada uno > aon.
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El mecanismo se visualiza comprobando el caso n = 4:

A15:a1—l—(ag—l—ag)+(a4+a5+a6+a7)+(a8+a9+---+a15)
<aj +2az +4a4+8ag = By
< 2(@1—|—a2+(a3+a4)+(a5+a6+a7+a8)) = 2As.

En la primera desigualdad cada bloque se condensa mayorando por su primer término;
en la segunda, 8ag se descondensa mayorando por as + ag + a7 + ag (y andlogamente
4ay por (ag + aq) y 2a9 por a; + az).

Esto ejemplifica por qué Asn_1 < B, < 2A49n_71 y, por tanto, la equivalencia de
convergencia. [ |

. J

La convergencia de la serie arménica de exponente p € N podria haberse estudiado aplicando
un unico criterio, de la siguiente manera:

| Ejemplo

e

Problema. Estudiar la convergencia de la serie armoénica con exponente p,
1
E:‘EE, ])G.N.

n>1

Resolucién. Aplicamos la condensaciéon a a, = - (sucesion decreciente y positiva):

n
IECHEDY

n>0 n>0

n

2y~ 5 (1)

Es una geométrica de razén 1/2P~1. Converge si p > 1 y diverge si p = 1. Por el criterio
de condensacion, la serie , -4 nip converge para p > 1y diverge (positivamente) para
p=1

\

| Ejemplo

e

Problema. Para g € N, estudiar la convergencia de

D

n>1

1

nn’

1
Resolucion. Sea a,, = —=. Entonces a, > 0y {a,} es decreciente, por lo que
nyn

podemos aplicar el criterio de condensacion. Calculamos

g gn. L1 (1
TS onyn Ty \al)

La serie condensada )~ 2" agn es geométrica de razon 2-1/4 < 1, luego es convergente.
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Por el criterio de condensacion, también converge la serie inicial

D

n>1

1

nn’

(Equivalente a la serie armonica de exponente 1 + % > 1.)

3.3 Ciriterios de convergencia para series de signo variable

Hasta ahora hemos estudiado series de términos no negativos. Pasamos al caso general, y
consideramos series ), ~; x, con x, € R.

En primer lugar, nos damos cuenta de que el caso realmente nuevo es cuando aparecen infinitos
términos positivos e infinitos términos negativos, ya que:

(1) Si el conjunto {n € N: z,, < 0} es finito, existe m € N de forma que x,, > 0 para n > m, y
sabemos que la convergencia de >, ~; =, equivale entonces a la de

E T,
n>m
que es de términos no negativos.

(2) De forma andloga, si {n € N: z,, > 0} es finito, estudiamos entonces la 3_, -, (—x,), que se
encuentra en las condiciones del punto (1).

Cuando )~ @, tiene infinitos términos positivos e infinitos negativos, resulta natural comparar
la serie con }, - |75|, lo que nos lleva a la siguiente nocién:

Definiciéon 3.14. Dada una serie de ntiimeros reales ), ~; x,, diremos que es absolutamente
convergente cuando la serie de valores absolutos

n>1
es convergente.

Como la nomenclatura sugiere, toda serie absolutamente convergente es convergente. Este hecho
es una consecuencia del Teorema de completitud de R.

Teorema 3.15. Toda serie absolutamente convergente es convergente. Mas ain, si Y~ |Zy]
converge, entonces » .~ &, también converge y

o o
’Z :z:n‘ <> |zl
n=1 n=1

Demostracion

Consideremos las sumas parciales de ambas series: S, = >} Tk ¥ 0n = Y p—q |Tk]
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para n € N. Para p,q € N con ¢ < p,

P p
|Sp_5q|:’ Z $k‘§ Z |zk| = 0op — 0g = |op — 04].
k=q+1 k=q+1

Noétese que la desigualdad anterior es obvia cuando p = q y, si p < ¢, basta intercambiar
las etiquetas de p y ¢. Por tanto, es valida para todo p,q € N.

Sabemos que {0, } converge, luego es de Cauchy. Por la desigualdad anterior, {S,,}
también es de Cauchy y, por completitud de R, converge. Es decir, la serie >, -z es
convergente.

Finalmente, como |S,| < o, para todo ny o, — > .~ |zs|, pasamos al limite y

obtenemos
[ee] [ee]
'Z :z:n‘ <>zl
n=1 n=1

. J

El reciproco no es cierto, y para entender por qué estudiaremos las series alternadas y el
criterio de Leibniz, que proporciona numerosos ejemplos de series convergentes que no lo son
absolutamente.

Definiciéon 3.16. Llamamos serie alternada a cualquier serie de la forma

Z(—l)"an o Z(_l)n+1an7

n>1 n>1
donde a,, > 0 para todo n € N.

Por ejemplo, la serie

recibe el nombre de serie armdnica alternada. Claramente, esta serie no es absolutamente
convergente, ya que >~ % diverge, pero veremos enseguida que si es convergente.

Proposiciéon 3.17 (Criterio de Leibniz). Sea {a,} una sucesién decreciente con {a,} — 0.
Entonces la serie alternada
> (=1)"an

n>1

es convergente.

Demostracion

Esta demostracion no se vio en clase.

Sea S, = Zﬁzl(—l)kak. Vamos a demostrar que S, es convergente probando que So,_1
y So, convergen al mismo limite.
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Usando que a,, es decreciente y a,, > 0, para todo n € N se tiene

Son—1 < Sop—1 + azp — a2p+1 = Son+1
——_———
>0

< Songi1 + aopg2 = Sony2 = Sop —Q2n41 + aopg2 < Sop.

<0

En resumidas cuentas, hemos visto que Sop,—1 < Sont1 < Sopgo < Sy Por tanto,
{San_1} es creciente y {Sa2,} es decreciente. En particular,

Sl < Sgn_l < Sgn < SQ Vn € N.
Por ser sucesiones mondétonas y acotadas, son convergentes, pero es claro que
{SZn - SQn—l} = {a2n} — 0.

Esto nos da que S9,, v S9,—1 tienen el mismo limite, y por tanto .5,, también converge
a dicho limite (recuérdese el ejercicio de la pagina 28). |

Anexos del capitulo

3.A Convergencia incondicional

Complementamos este capitulo discutiendo sobre la pregunta que nos hicimos al principio: jes
realmente correcto interpretar la suma de una serie convergente como la suma de todos los
términos de una sucesion?

Hemos visto que en algunos casos la suma de una serie presenta ciertas propiedades de distribu-
tividad y de asociatividad. Nos preguntamos ahora por la posible conmutatividad en un sentido
muy general: si permutamos de cualquier forma los sumandos de una serie, jse mantiene la
convergencia y la suma de la serie sigue siendo la misma? Vamos a comentar algunos resultados
acerca de esta cuestién, sin entrar en las demostraciones.

Definiciéon 3.18. Una permutacion de los nimeros naturales es una aplicaciéon biyectiva
7 : N — N. Dadas una sucesién {z,} y una permutacién 7 de los nimeros naturales, podemos
formar la sucesién {2 (,)}, que consiste en reordenar los términos de {,} segin 7.

Pues bien, si la serie ), -, x, es convergente y la suma de series verificase la propiedad
conmutativa, la serie reordenada > n>1Tx(n) deberia ser convergente y tener la misma suma que
la serie de partida. En principio esto no esta nada claro, ya que es dificil relacionar las sumas
parciales de ambas series.

Definiciéon 3.19. Se dice que una serie de ntimeros reales ), < z, es incondicionalmente
convergente cuando, para cualquier permutacion m de los niimeros naturales, la serie reordenada

Y Ta(n)

n>1
es convergente.

Es claro que toda serie incondicionalmente convergente es convergente, pues basta tomar
m(n) = n para todo n € N. De hecho, se tiene la siguiente equivalencia:
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Teorema 3.20. Sea _,~; T, una serie de nimeros reales. Entonces, >~ z, es incondicional-
mente convergente si, y solo si, es absolutamente convergente. En tal caso:

o0 (o)

D Tam) = D Tn

n=1 n=1
para toda permutacion 7 : N — N.

Como se ha dicho, no vamos a exponer con detalle la demostraciéon de esta equivalencia, pero si
vamos profundizar en un hecho que aparece tacitamente en el resultado anterior: si ), < =,
converge pero no lo hace absolutamente, podemos reordenar sus términos para formar una
sucesiéon divergente. Pero peor aun, incluso para las reordenaciones que dan lugar a series
convergentes, la suma que se obtiene depende de la permutacién de los niimeros naturales que
usemos. Este resultado se debe al matematico aleman Bernhard Riemann y puede enunciarse
como sigue.

Teorema 3.21 (Teorema de Riemann). Sea ),~; =, una serie convergente, que no converja
absolutamente, y fijemos s € R. Entonces existen permutaciones 7y, m_ y 7 de los nimeros
naturales, tales que >y Tr, (n) = +00, Y551 Tr_(n) = —00 ¥ la serie >, 5 T () converge,

con
o0
D Trm) = 5
n=1

Dicho de forma mas intuitiva, toda serie convergente que no converja absolutamente, puede
reordenarse para que diverja positivamente, para que diverja negativamente, y también para
que converja a cualquier niimero real que queramos.

Como conclusién general, podemos decir que si la serie converge absolutamente, esté justificado
pensar que la suma de la serie responde a la idea intuitiva de sumar todos los términos de {x,,}.
En particular, este es el caso de las series convergentes de términos no negativos. Sin embargo,
cuando ), -, T es convergente, pero no absolutamente convergente, esa idea intuitiva debe
manejarse con precaucion.
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Funciones reales de una variable real

4.1 Introduccién

En muchos contextos cientificos es necesario describir la forma en que una magnitud depende

de otra. Una manera sistemdtica de hacerlo es mediante el concepto de funcidn.

Historicamente, la idea de funcion surgié en el siglo XVII al estudiar relaciones entre cantidades
variables en fisica y geometria. Por ejemplo, Galileo describia la posicién de un cuerpo en
movimiento como dependiente del tiempo, y en el siglo XVIII Leibniz y Euler consolidaron el
término funcion para referirse a una regla que asigna a cada valor de una variable otro valor

determinado.

-

La primera funcion de la ciencia.

A comienzos del siglo XVII, la fisica empez6 a orientarse hacia la observacion y la
experimentacién. Uno de los primeros grandes descubrimientos fue comprender que
el mismo principio que explica muchos de los fenémenos terrestres es el que también
gobierna los movimientos de los planetas en el cielo: la Gravitacion Universal. En ese
contexto, Galileo Galilei (Pisa 1564 — Florencia 1642) fue el primero en plantear que
los fenémenos naturales podian analizarse cuantitativamente: midiendo magnitudes y
relacionandolas mediante leyes matemaéticas.

La caida de los cuerpos.

Galileo cuestioné la idea, heredada de Aristoteles, de que los cuerpos méas pesados caen
méas rapido. Segin narra la tradicién, dejé caer dos esferas, una de hierro y otra de
madera, desde la torre de Pisa, observando que llegaban al suelo al mismo tiempo.
Concluyé que, en ausencia de resistencia del aire, todos los cuerpos caen con la misma
aceleracién. Sin embargo, comprobarlo con precisién era dificil en una época en la que
no existian cronémetros como los que conocemos; la caida era demasiado rapida para
medir los tiempos con exactitud.

Para superar esa dificultad, Galileo ide6 un experimento méas controlable: hacer rodar
una esfera por un plano inclinado. Asi suavizaba la accién de la gravedad, consiguiendo
que el movimiento fuese mas lento. Variando la inclinacién del plano, podia comparar
los resultados y extrapolarlos al caso de la caida vertical.

Galileo colocod pequenas campanillas a lo largo de la rampa, de modo que sonaran al
paso de la esfera. Ajust6 su posicién hasta lograr que sonaran a intervalos de tiempo
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iguales, que media con una clepsidra (reloj de agua). Después midi6 las distancias entre
las campanillas, es decir, los espacios recorridos por la esfera en intervalos iguales de
tiempo.

Segun los resultados del experimento, esas distancias seguian la progresién 1, 3, 5, 7,.. .,
lo que indicaba que el cuerpo recorre espacios cada vez mayores, pero con una regularidad
precisa. De hecho, la misma conclusion podia obtenerse cambiando la inclinacién del
plano y la masa de la esfera. Sumando esos incrementos, Galileo obtuvo

(1) = 1,

d(2) =1+3=4,
d(3)=1+3+5=09,
d(4) =1+3+5+7=16,

es decir, distancias proporcionales al cuadrado del tiempo transcurrido:
d(t) = C't2.

Galileo habia descubierto la primera relacién funcional entre dos magnitudes fisicas:
la distancia recorrida por un cuerpo en caida (o en un plano inclinado) y el tiempo
transcurrido. Esa expresion, aunque simple, representa un cambio radical en la forma
de entender la naturaleza: a partir de entonces, describir un fenémeno significaria
encontrar la funciéon que relaciona sus variables.

1+3+5+7

.

Las funciones permiten, por tanto, expresar de manera precisa la dependencia que existe entre
dos magnitudes reales. Algunos ejemplos cotidianos son:

(1) La altura de una persona en funcién de su edad.

(2) El nimero de ejemplares de una especie en un determinado habitat en funcién del tiempo.

De forma general, el concepto de funcién recoge la idea de que un conjunto de datos puede
depender de otro. En su formulacién moderna, una funcién es una ley o correspondencia que
asocia a cada elemento de un conjunto un tinico elemento de otro.

Definicién 4.1. Sean A, B C R no vacios. Llamamos funcion real de variable real a cualquier

aplicacion f : A — B, esto es, una correspondencia que asigna a cada elemento x € A un tinico
elemento f(z) € B.

Para definir una funcién suele usarse la siguiente notacién, que especifica el dominio de definicién
de una funcién f, asi como la ecuacion que nos permite obtener f(z) a partir de z.

f: A— B, = flx)=--- o f: A— B, flx)=---

Si f: A— B es una funcién, decimos que A es su conjunto de definiciéon o dominio.
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Puesto que sdlo vamos a trabajar con este tipo de funciones, cuando usemos la palabra funcion,
nos referimos siempre a una funcién real de variable real.

Definicién 4.2. El conjunto f(A) de los valores que toma f se llama imagen o recorrido de f.

f(A)={f(z):z€e A} ={yeR:y = f(x) para algiin z € A}

Dado que toda aplicaciéon f : A — B es en particular una aplicaciéon f : A — R,
siempre podemos escribir lo segundo. Especificar que una funciéon f devuelve valores
en B es una forma de enfatizar la propiedad f(A) C B. Por ejemplo, la funcién parte
entera de x suele denotarse como [-] : R — Z, ya que | x| € Z para todo z € R.

Noétese que si elegimos B = f(A), f se convierte autométicamente en una aplicacién
sobreyectiva.

\ J

Toda funcién real queda completamente determinada por su grdfica, que es el siguiente subcon-
junto de R x R:

Grf=A{(z, f(x)) :z € A}

Si representamos este conjunto en el plano cartesiano R2, los puntos (z,y) que forman Gr f
son aquellos que cumplen dos condiciones: la abscisa x es un punto de A y la ordenada y es su
imagen por f. En resumidas cuentas:

Grf={(r,y) eR*:z €A y=[f(z)}.
Por definicién de funcién, para cada = € A la recta vertical que pasa por (z,0) contiene un

dnico punto de la grafica, el que verifica y = f(z). Si x ¢ A, dicha recta no corta a la gréafica
de f.

(@) fmmmm e

Geométricamente, al proyectar Gr f sobre el eje de abscisas se obtiene el conjunto A donde f
estd definida y, para cada = € A, f(x) es el tinico y € R tal que (z,y) € Gr f.

Esto motiva la notacién y = f(x) para € A a la hora de definir funciones. Bajo ese punto
de vista, a z se le llama variable independiente, e y se dice que es la variable dependiente. Fn
términos de relaciones entre magnitudes, es conveniente pensar en x como en un dato y en
y como en un resultado. La funcién f juega el papel del modelo que nos permite predecir el
resultado y a partir del dato z.
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Date cuenta: La relacién 32 = z en R? no define la grafica de una funcién R — R,
va que existen valores de x con dos imagenes. Por ejemplo, para = = 4, tenemos y = 2
ey =—2.

Y
(4,2)

(47 _2)

En cambio, x — /x y  + —y/z si son funciones (definidas por ejemplo en [0, +00)).

\ J

Definicién 4.3. Dada una relacién y = f(x), llamamos dominio natural o dominio mazimal
de f al mayor subconjunto de R donde puede definirse f, y lo denotamos por

Dom(f) ={z eR: f(x) € R}.

Ejemplos.

(1) Si f es una funcién polinémica, Dom(f) = R, ya que podemos sumar, multiplicar y elevar a
potencias naturales cualquier niimero real.

p(z)

FOL siendo p y ¢

(2) Llamamos funcién racional a cualquier funcién f de la forma f(x) =
funciones polinémicas. En tal caso, se tiene

Dom(f) ={z € R: g(z) # 0}.

1
La funcién racional z — — puede definirse para todo x € R* = {z € R : z # 0}.
x

Su representacion gréafica es una hipérbola de dos ramas.
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(3) Para n € N, el dominio maximal de una funcion radical de la forma f(z) = */g(z) son los

puntos donde el radicando g es no negativo:

Dom(f) ={z € R: g(zx) > 0}.

Si f(x) = Va? — 4, entonces

Py | | | Pu
® T T T @

—2 2

T

Dom(f) ={x € R:2? —4 > 0} = (o0, —2] U [2, +00).

Conocida la grafica de una funcién, es facil obtener la de funciones similares obtenidas mediante
transformaciones elementales de la original, como son las traslaciones, las dilataciones y las

reflexiones.

Definicion 4.4. Sea f: A — R una funcién. Dado ¢ € R, llamamos

Ac={z€eR:z4+ce A} ={r—c:x € A}

(1) La traslacién horizontal de ¢ unidades de f es la funcién g : A, — R definida como
g(x) = f(x+c). Siec> 0, se trata de una traslacién a la izquierda, y si ¢ < 0, una traslacién

a la derecha.

(2) La traslacién vertical de ¢ unidades de f es la funcién g : A — R definida como

g(z) = f(x) + ¢. Si ¢ > 0, estamos trasladando la funcién f hacia arriba, y si ¢ < 0, hacia

abajo.
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Y
y £ x> 42 Y
+2
Yy = 22 Y= Y= T - 3)2
x \/ SN
-1 0
A= [_1*1} A—3: [2*4}
Definicion 4.5. Sea f: A — R una funcién. Dado un ¢ € R*, llamamos
cA={cx:x € A}
(1) La reflexién respecto al eje = de f es la funcién g : A — R definida como g(z) = — f(x).

(2) La reflexion respecto al eje y de f es la funcién g : —A — R definida como g(z) = f(—x).

(3) La reflexién respecto al origen de f es la funcién g : —A — R definida como g(x) =

—f(=2).

Reflexion respecto al eje x: cada punto (z,y) € Gr(f) se transforma en (z, —y) € Gr(g).

Las funciones que permanecen invariantes ante las transformaciones (1) o (3) tienen graficas
simétricas, lo que se traducira en propiedades analiticas tiles a la hora de calcular sus integrales.

Definicion 4.6. Sea A C R tal que —A = A. Se dice que una funcién f: A — R es
(1) simétrica par si f(—z) = f(z) para todo = € A.

(2) simétrica impar si f(—z) = —f(x) para todo = € A.
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y = |zl y:T3

Funcién par: |—z| = |z

Funcién impar: (—z)% = —23

Las graficas de las funciones pares tienen la propiedad de que al plegarlas a lo largo del eje vy,
las mitades a ambos lados del origen son coincidentes. Andlogamente, si plegamos la grafica
de una funcién impar a lo largo de ambos ejes, las mitades a ambos lados del (0,0) resultan
coincidentes.

Finalmente, discutimos las transformaciones que consisten en modificar la escala de la variable
o de la funcion.

Definicion 4.7. Sea f: A — R una funcién y ¢ > 0.

Sic>1:

(1) La contraccién horizontal de razén c es la funcién g : A — R definida por g(z) = f(cz).
(2) La dilatacién vertical de razén c es la funcién g : A — R definida por g(z) = cf(z).
Siec<1:

(3) La dilatacién horizontal de razén c es la funcién g : A — R definida por g(z) = f(cz).
(4) La contraccién vertical de razén c es la funciéon g : A — R definida por g(x) = cf(x).

Y

7

Dilatacién horizontal de razén 1/2.

En general, una funcién puede obtenerse combinando varias de las transformaciones
anteriores. Por ejemplo, si partimos de f(x) = 2%, podemos representar la gréfica de la
funcién

g(x) =1—(z+2)%

su grafica se obtiene aplicando sucesivamente:




Capitulo 4. Funciones reales de una variable real 68

(1) una traslacién 2 unidades a la izquierda (z + 2);
(2) una reflexién respecto al eje = (signo negativo delante del cuadrado);

(3) una traslacién 1 unidad hacia arriba (el +1 final).

Y
y=a’
y = (v +2)°
—2¢énx
RLIIL iULl
xr

y=1—(v+2)?

+1 en yT
y=—(x+2)°

Composicién de transformaciones: traslaciéon, reflexién y traslacion vertical.

\ J

Enumeramos a continuacién las operaciones algebraicas que podemos hacer con dos funciones
definidas en un subconjunto A C R no vacio. Para ello, definimos F(A) como el conjunto de
todas las funciones f: A — R.

Definicién 4.8. Para cualesquiera f,g € F(A) y a € R, definimos las siguientes operaciones:
(1) Suma: f + g € F(A), siendo (f + g)(x) = f(x) + g(z), Vx € A.

(2) Producto: fg € F(A), siendo (fg)(x) = f(z)g(x), Yz € A.

(3) Producto por escalares: af € F(A), siendo (af)(z) = a f(z), Vx € A.

(4)

4) Cociente: Si g(z) # 0 para todo = € A, entonces f/g € F(A), con

<£) (x) = ;ég, Vo e A.

Las propiedades de la suma y producto de ntimeros reales se traslada inmediatamente a la de
funciones. La suma de funciones es asociativa y distributiva, y tiene como elemento neutro a la
funcién x +— 0 para todo z € A. Ademads, toda f € F(A) tiene una funcién opuesta, —f. El
producto por su parte es asociativo, conmutativo y distributivo respecto de la suma, y ademés
posee el elemento neutro x +— 1 para todo x € A. Asi pues, (F(A),+,-) es un anillo conmutativo
con unidad.

e N

Para o € R, a menudo interpretaremos « como la funciéon que vale constantemente «,
estoes, fo : A = R, fo(x) = a. En particular, escribimos f = 0 para decir que f(z) =0
para todo z € A, y por f # 0 entendemos que existe un z € A tal que f(z) # 0.

Entonces, el producto por escalares no es mas que un caso particular del producto

de funciones, aunque conviene resaltar que (1) y (3) dotan a F(A) de estructura de
espacio vectorial (de dimensién infinita).




Capitulo 4. Funciones reales de una variable real 69

Si f(z) # 0 para todo x € R, f tiene una inversa para el producto; la funcién 1/f. Sin embargo,
salvo en el caso trivial en que A es un solo punto, esta condicién es mas fuerte que f # 0. Por
tanto F(A), en general, no es un cuerpo.

Preferimos evitar la notacién f~! para referirnos a la funciéon 1/f, ya que esta se reserva para
la funcién inversa respecto a la composicién de funciones.

Definicién 4.9. Sean f: A - Ry g: B — R funciones tales que f(A) C B. Definimos la
composicion de f con g como la funciéon go f: A — R dada por

(9o f)(x) =g(f(x)), VzeA

f g
gof

Ejemplo: consideremos la funcién valor absoluto V : R — R definida por V(z) = |z|
para todo x € R. Para cualquier funcién f : A — R se tiene trivialmente que f(A) C R,
lo que nos permite considerar la funcién compuesta

(Vo f)(z) =V(f(x)=I[f(x)],  VeeA,

que se suele denotar por |f].

. J

| Ejemplo

s ~

Problema. Consideremos las funciones f,g : R — R dadas por f(z) = |z|, g(z) =
23 — . Comprobemos que (f o g) # (go f).

Resolucién. Calculamos:

(fog)(a) = flg(x)) =|2° —al, (9o f)(x)=g(f(2)) = |z’ |zl

A primera vista las expresiones son parecidas, pero no coinciden. Por ejemplo, para

_ _ 1.
T = —3

N[
0o|w

(feg)=3)=1(=3)+3l=2  (goN—3) =)~
Si representamos ambas composiciones vemos de forma mas clara las diferencias:
(fog)(a) =12 —a (9o f)(z) = |2]* — |z]

Y Y

En conclusién, el orden en que se componen las funciones es esencial: aunque ambas
composiciones tengan sentido, generalmente (f o g) # (g o f).
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Definicion 4.10. Sea f : A — R. Recordamos que f es inyectiva si nunca toma el mismo
valor en dos puntos distintos del conjunto A, es decir, si se verifica que

r,y€ A, flr)=fy) = =y

Si f: A — B es una funcién inyectiva, entonces la ecuaciéon y = f(x) tiene una tnica solucién
(en z), lo que se traduce graficamente en que cada recta horizontal a altura y € f(A) interseca
a Gr f en un solo punto.

f(x)

Gréfica de una funcién no inyectiva.

Definicién 4.11. Sea f: A — R una funcién inyectiva. Entonces f puede considerarse como
una aplicacién biyectiva de A sobre f(A), y podemos definir su funcién inversa

FTHfA) = A,
asociando a cada y € f(A) el Gnico x € A que cumple f(x) =y, es decir,
i) =o talaue f()=y.
Obsérvese que tiene sentido considerar las composiciones f~'o f y fo f~1, y se verifica, por
definicion:
(fflof)a)=a Yeed vy (fof Dy =y Vyef(A)

Las igualdades anteriores suelen leerse diciendo que f~! o f es la funcién identidad en A,
y fo f7! la identidad en f(A). Ademés, f~! también es inyectiva y su inversa es la funcién
original, es decir,

(fHt=r
Cuando f~! existe, su grafica es la imagen especular de la grafica de f respecto a la bisectriz
del primer cuadrante de R?, esto es, la recta de ecuacién y = .

Para comprobarlo, basta darse cuenta de que y = f(z) <= f~'(y) = z. En particular, si el
punto (x,y) pertenece a la grafica de f, entonces el punto (y,z) pertenece a la grafica de f~1.
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Las graficas de f v f~' son simétricas respecto a la recta y = z.

La simetria deja claro que la inversa no siempre existe como funcién. Por ejemplo, si f(z) = 2,
su gréfica es la recta horizontal y = 2; reflejada respecto a y = x se obtiene la recta vertical
x =2, que no es la grafica de ninguna funcién y = h(z).

y, Y=2 y

(no es una funcion)

4.2 Funciones continuas

Intuitivamente, una funcién f serd continua en un punto x cuando, al acercarnos a x, los valores
de la funcién se acerquen a f(z). Como veremos, esta nocién admite varias formulaciones
equivalentes, siendo la mas manejable la de acercarnos a x a través de una sucesion {z,} — x.

Definicién 4.12. Sea f: A — R una funcién x € A. Decimos que f es continua en z si para
cada ¢ > 0 existe 0 > 0 tal que, si y € A verifica |y — x| < d, entonces |f(y) — f(x)| < e. Es
decir,

Ve>036>0: ye A ly—z|<d = |f(y) — f(x)] <e.

Obsérvese que no tiene sentido hablar de la continuidad de una funcién en puntos
que no estan en A.

Si ) # B C A, diremos que f es continua en B si f es continua todo punto de B. En particular,
diremos simplemente que f es continua cuando sea continua en A.

Interpretacién geométrica de la continuidad.

Fijados f: A —> Ry z € A, para cada ¢ > 0 consideramos la banda horizontal entre las
rectas y = f(z)—eyy = f(x)+e. La condicién de continuidad afirma que, por estrecha
que sea esa banda, existe un ¢ > 0 tal que la parte de la grafica de f correspondiente a
los puntos y € A con |y — 2| < § queda entera dentro de la banda. Es decir, el trozo de
grafica sobre el intervalo (x — d,x 4+ ) N A se mantiene entre f(x) —cy f(z)+e.
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(z, f(z))

x
o— o— T
rT—0 x+0

Proposicién 4.13 (Caracterizacién secuencial de la continuidad). Sea f : A — R y fijemos
x € A. Son equivalentes:

(i) f es continua en el punto x.

(ii) Para toda sucesién {x,} con x,, € Ay {z,} — z, se tiene {f(x,)} — f(z). A esta propiedad
se le suele dar el nombre de continuidad secuencial.

(iii) Para toda sucesién mondtona {x,} de puntos de A, con {z,} — z, se tiene {f(z,)} — f(x).

Demostracion

(i)=(ii). Sea {z,} C A con x,, — z. Debemos ver que f(x,) — f(x). Sea € > 0; por
(i) existe 6 > 0 tal que |y — x| < § implica |f(y) — f(z)| < e. Como xz,, — z, existe
m € N con |x,, — x| < § para todo n > m. En consecuencia, para n > m,

[f(@n) = f2)] <e.

Esto prueba que f(x,) — f(z).

(ii)=(iii). Es inmediato: si (i) vale para toda sucesién de puntos de A que converge a
x, entonces en particular vale para las sucesiones mondtonas.

(iii)=-(i). Demostraremos el contrarreciproco: si (i) no se verifica, entonces tampoco
puede cumplirse (iii).

Si (i) es falso, entonces existe 9 > 0 tal que, para todo § > 0, se puede encontrar
y € A con |y — x| < ¢y, sin embargo, |f(y) — f(x)| > &o.

Para cada n € N tomamos 6 = % y obtenemos un y, € A tal que

=zl <3y 1f(ym) = f@)] = <0

Entonces {y,} — z. Sea {x,,} una subsucesiéon monétona de {y,}, que existe por el
lema del sol naciente. Se sigue que {z,} =z y

|f(zn) — f(x)] > &9 para todon € N.

Por tanto, {f(x,)} no converge a f(z). [ |

. J

La caracterizacién de la continuidad (i) nos permite dar de forma inmediata los primeros
ejemplos de funciones continuas.
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Primeros ejemplos.

» Las funciones constantes f(z) = a, con a € R, son continuas.

» La funcidn identidad en A, dada por f(z) = z para todo x € A, también es
continua.

» La funcién valor absoluto es continua. Si {x,} — =, entonces {|z,|} — |z|.

. J

Proposicion 4.14. Sean f,g: A — R funciones continuas en un conjunto no vacio B C A.
Entonces f + g y fg son continuas en B. Si ademés g(x) # 0 para todo = € A, el cociente f/g
es continuo en B.

Demostracién

Sea x € By {z,} C A una sucesién tal que x,, — x. Por la continuidad de f y g en =z,

fzn) = f(z) v g(zn) = g(2).
Entonces:

(1) Para la suma,

{(F+9)(wn)} = {f(xn) +9(zn)} — fl2)+9(2) = (f +9)(2).

(2) Para el producto,

{(F9)an)} = {f(2n) g(zn)} — fz)g(z) = (f 9)(2).

(3) Para el cociente,

u J

Este resultado nos permite construir numerosas funciones continuas:

-

Ejemplos:
» Toda funcién polinémica p(x) = F_garz®, con n € N, ap € R para todo
k=0,...,ny a, # 0, es continua en R.
= Si py ¢ son funciones polinémicas con g # 0, entonces la funcién racional f =
es continua en su dominio natural de definiciéon {z € R : ¢(x) # 0}.

ESHiS]

\ J

Comprobamos ahora la continuidad de la composicién.

Proposicién 4.15. Sean f: A - Ry g: C'— R funciones tales que f(A) C C. Si f es continua
enx € Ay ges continua en f(z) € f(A), la composicién g o f es continua en x.

En particular, si f es continua en un subconjunto no vacio B C A y g es continua en g(B),
entonces g o f es continua en B.
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Sea x € By {x,} C A una sucesién con x,, — x. Por ser f continua en x, tenemos
f(zn) — f(x); por tanto {f(xy,)} es una sucesién de puntos de C' que converge a f(z).
Como g es continua en f(z) € f(B), concluimos que

{9(f(zn))} = g(f ().
Esto prueba que g o f es continua en x, y como x € B era arbitrario, en todo B. W
El reciproco no es cierto en general: puede ocurrir que g o f sea continua y, sin embargo, f o

g no lo sean.

-

Para verlo, construimos una funciéon extremadamente discontinua: definimos f: R — R
por
-1, z€Q,
(o) = (@.1)
1, z el
Dado = € R, la densidad de Q y de I en R nos permiten construir sucesiones {g,} C Q
y {rn} CILcon {gn} — =y {rn} — = (esto puede verificarse como ejercicio).

Entonces {f(q,)} — =1y {f(rn)} — 1; si f fuese continua en x tendriamos necesaria-
mente —1 = 1, contradiccién. Asi, f no es continua en ningin punto de R.

Podemos observar que |f| = 1, lo que nos da una composicién continua sin que f lo
sea.

Funcién de Thomae. Definimos 7' : R — R por

1 p

- sizx==€Q,conpeZ,qgeNymed(|p|,q) =1,
o) - p (Ipl; )

0 sizel

(Obsérvese que la condiciéon med(0, ¢) = 1 implica necesariamente que 7°(0) = 1).
Se tiene que T es continua en I y discontinua en Q.

Continuidad en los irracionales. Sea z € [ y € > 0. Elegimos un ng € N tal que
% < e. Puede comprobarse sin dificultad que en el intervalo (x — 1,2 4+ 1) hay, como
mucho, una cantidad finita de racionales de la forma p/q con 0 < ¢ < ng. Esto nos
permite tomar un § > 0, suficientemente pequenio, de forma que

(x—é,x—l—é)ﬁ{zEQ:O<q§no}:®.

(En efecto, podemos tomar como ¢ la mitad de la distancia al racional més cercano
a x de la forma p/q con 0 < ¢ < ng.) Sea entonces y € R con |y —z| < 6. Si y es
irracional, entonces |T'(y) — T'(x)| = 0 < ¢ trivialmente. Si y = £ es racional, tenemos
necesariamente g > ng, lo que nos da

) ~T(@)] = 7 < - <=
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Esto demuestra que T es continua en .

Discontinuidad en los racionales. Sea x = £ € Q en forma irreducible. Tomando
cualquier sucesién de irracionales {x,} — x, se tiene T'(z,) = 0 para todo n, luego
{T(xn)} — 0 # % = T(x). Por la caracterizacién secuencial de la continuidad, 7" no es
continua en x.

Fuente: Wikipedia, https://en.wikipedia.org/wiki/Thomae%27s_function.

El matematico inglés John H. Conway dot6 a esta funcién del nombre Estrellas sobre
Babilonia debido a la forma de su gréfica.

Ejercicio: Sea f: R — R dada por

f(x):{w six eQ,

—x sixel

Estudiar en qué puntos de R es continua f.

\

La continuidad de una funcién f es una caracteristica de las que llamaremos locales, es decir,
para estudiar si f es continua en z, solo nos interesan los valores que toma f cerca de x. Para
formalizar esto, necesitamos la siguiente definicion:

Definicién 4.16. Sean f : A - Ry () # B C A. La restriccién de f a B es la funcién
flB : B — R definida por

(flB)(z) = f(z), VaeB.

En este contexto, también suele decirse que f es una extension de g.

Proposiciéon 4.17 (Caracter local de la continuidad). Sean f: A > R, 0 #B C Ay
z € B.

(1) Si f es continua en z, entonces f|p también es continua en z.

(2) Si existe 6 > 0 tal que (x — 40,24+ 0)NA C B,y f|p es continua en x, entonces f es
continua en x.


https://en.wikipedia.org/wiki/Thomae%27s_function
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Demostraciéon

(1) Sea {z,} C B con z, — z. Entonces {z,} C Ay, por la continuidad de f en z, se
tiene f(z,) — f(z). Como (f|B)(wn) = f(xn), concluimos (f|B)(zn) — (f|B)().

(2) Sea ahora {x,} C A con x,, — x. Por la definicién de convergencia, existe m € N
tal que para n > m se cumple |z, — x| < J, luego =, € (x —d,x +0)NA C B.
Usando la continuidad de f|p en z, obtenemos

n>m, f(zn)=(f|)(zn) — (flB)(x) = f(2).

Asi, f es continua en .

Nota: La hipdtesis adicional en (2) no puede eliminarse; dicho de otro modo, el
reciproco de (1) es falso en general.

Para comprobar esto, basta considerar la funcién f definida en (4.1) y B = {«} para
cualquier z € R. f|p es trivialmente continua, pero f no es continua en x para ningin
z e R

.

Este resultado es especialmente util para estudiar funciones cuya definicién f(x) cambia a lo
largo de su conjunto de definicién.

| Ejemplo

e N

Problema. Estudiar la continuidad de la funcién parte entera

|'|:R—>Z
|z =méx{k €Z:z <z}

Y
3 Y= LxJ
2 - ———0
1 - ——0

Resolucién. En primer lugar, veamos que |-] es discontinua en todo = € Z. Para esto,
basta considerar la sucesién z, = x — 5, ya que {z,} — 2 y |2,] = 2 — 1 para todo
n, luego {|zn]} = —1# |x].

Sea ahora x € R\ Z, y definamos B = (|z], |z + 1]). Claramente = € B y si tomamos
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0<d<min{|z+ 1] —x,z— |z]}, se tiene
(r—9,z+0)NR C B.

Por el cardcter local de la continuidad, si |-| |p es continua en x, lo serd también |-|.
La primera lo es, ya que es constantemente igual a |z, esto es:

lyl = =] vyeB

Por tanto, |-] es continua en R\ Z.

Ejercicio: Estudiar la continuidad de las funciones f, g : R — R dadas por

xﬁJ sixz #0,

f(:v):{mQJ Vz € R, g(:n):{o Gre0

N

| Ejemplo

>

Problema. Sean g, h : R — R funciones continuas tales que g(0) = h(0). Definimos

Estudiar la continuidad de f en R.
Resolucién. Notamos primero que f ‘Rg =hy f’RS = g, por lo que f es continua en

R* y en R~ por el cardcter local de la continuidad.

Queda z = 0. Tomemos una sucesién {z,} — 0. Por la caracterizacién secuencial con
sucesiones monétonas, podemos suponer que {z,} es mondtona.

Si {xn} es creciente, entonces x, < 0Vn,y por tanto { f(z,)} = {g(zn)} — ¢g(0) = f(0).
Si {x,} es decreciente, entonces z, > 0 VYn, y {f(zn)} = {h(zn)} — h(0) = f(0).

En ambos casos {f(z,)} — f(0), luego f es continua en 0. Concluimos que f es
continua en todo R.

. J

4.3 Limite funcional

En esta seccion estudiaremos el comportamiento de una funcién al acercarnos a un punto de la
recta real, que no necesariamente pertenecera al dominio de la funcién. Solo necesitaremos que,
desde el conjunto en el que trabajamos, podamos acercarnos a dicho punto sin pasar por él.

Definicién 4.18. Sea A C Ry a € R. Diremos que « es punto de acumulacion de A (o que A
se acumula en «) si para todo 6 > 0 se verifica

(a—d,a+06)N(A\{a}) # 0.

Intuitivamente, o € R es un punto de acumulaciéon de A si existen puntos de A distintos de «
arbitrariamente cerca de a.
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Denotaremos A’ = {« € R : A se acumula en a}.

Los puntos de acumulacién de A se caracterizan por ser puntos de R a los que se puede llegar
mediante sucesiones de A que no pasen por dicho punto.

Proposicion 4.19. Sea A C Ry a € R. Entonces

acA < F{x,} c A\{a} tal que {z,} — a.

Demostracion

(=) Supongamos o € A’. Para cada n € N tomamos § = —. Por la definicién, existe
zn € (=Lt a+ 1N (4\ {a}), luego 0 < |z, — af < -, v por tanto {z,} — o

S =

(<) Si existe {z,,} € A\ {a} con {z,} = «, dado § > 0 podemos escoger m tal que
|z, — a| < 0. Entonces x,, € (o — 0, a4 9) N (A\ {a}), luego la interseccién es no
vacia para todo 6 > 0. Asi, a € A'.

|

u J

Pasamos a calcular los puntos de acumulacién de un intervalo real.

Proposicion 4.20. Sea I C R un intervalo. Entonces:
(1) SiI=10o01I={a} es un punto, entonces I’ = ().

(2) Si I es un intervalo no trivial (contiene al menos dos puntos), entonces:

(a,b)" = (a,b] =a,b)' = [a,0]' = [a,b]
(a,+00) = [a,+00)’ = [a,+0)
(—oo,b)’ - (—OO,b]I - (_Oovb]
R’ = R

Demostracion

FEsta demostracion no se vio en clase.

(1) Es claro: si I = ) no hay puntos en I; si I = {a}, ningin punto « # a puede ser
de acumulacién, ya que todas las sucesiones de puntos de I convergen a a. Ademas,
aé¢l' yaquell\{a}=0.

(2) Sea I un intervalo no trivial, esto es, un intervalo que contiene al menos dos puntos.
Empezaremos probando que todos los puntos de I son de acumulacién, esto es, I C I'.

Dado x € I, existe y € I con y # x. Para 0 < § < |y — x| se tiene
(x = b,z +38) NI\ {z}) #0,

ya que todos los puntos entre x e y pertenecen a I. Esto nos da que z € I’. Como
consecuencia inmediata tenemos R’ = R.

A continuacién, demostraremos que si I estd acotado y a = inf I, b = sup I, entonces
a,b € I'. Por tanto, tendremos [«, ] C I'.
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Por definicién de intervalo, (a,b) C I, lo que nos da que para 0 < § < 3 — « se tiene
(a,a+6) NI#0,

luego v € I'. Un razonamiento andlogo nos da 3 € I'.
Reciprocamente, probemos que I’ C [a, b].

Seax € I', y {xy,} C I\ {x} una sucesién con {x,} — x. Puesto que a < x,, <b para
todo n, pasando al limite tenemos a < x < b, luego x € [a, b], como queriamos.

Si I es una semirrecta (abierta o cerrada), un argumento analogo muestra que I’ esta
contenido en la correspondiente semirrecta cerrada. |

\ J

Una regla sencilla que nos permite simplificar el calculo de los puntos de acumulaciéon de un
conjunto es la siguiente:

Proposicién 4.21. Para A, B C R se tiene (AU B) = AU B'. [ ]

El ejemplo de los intervalos muestra que, en general, no existe una relacién de inclusién entre A
y A’. Pueden existir puntos de acumulaciéon de A que no sean elementos de A y puntos de A
que no sean de acumulacion. A los segundos se les da el nombre de puntos aislados, que describe
de forma muy clara a qué tipo de puntos de A nos referimos.

Definicién 4.22. Dado A C R no vacio, decimos que x € A es un punto aislado de A si x ¢ A'.

De forma manifiesta, toda funcién f: A — R es continua en todo punto aislado x € A\ A’, ya
que la Unica forma de acercarnos arbitrariamente a x es a través de la sucesién constantemente
igual a x.

Proposicién 4.23. Sea f: A — R una funcién y x € A\ A’. Entonces f es continua en z.

Demostracién

Puesto que x ¢ A’, existe § > 0 tal que (x — d,z + ) N A = {x}. Entonces, dado € > 0,
es claro que si y € A es tal que |y — z| < d, entonces y = x. Por tanto,

|fly) = flz)|=0<e.

. J

Definicién 4.24. Sea A C Ry o € A’. Decimos que f tiene limite L € R en el punto « si para
todo € > 0 puede encontrarse un § > 0 tal que, para todo x € A\ {a} con |z — a| < § se tiene
|f(xz) — L| < e. Simbdlicamente,

Ve>036>0: (€A, 0<|z—a|l<d) = |f(x)-L|<e.
En tal caso escribimos

lim f(z) =L, o flx) = L (x— «a).

r—a
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Nota: Esta definicién de limite no es buena si a ¢ A’, ya que en ese caso existe un
dg > 0 tal que
{reA:0<|z—a|<d}=0.

Por lo tanto, para cualquier valor L € R, dg hace cierta la condicién de limite
(0<|z—al <d = |f(x)— L| < ¢), pues esta debe ser verificada para un conjunto
vacio de puntos. Esta observacién se apoya en un hecho basico de la 16gica proposicional,
a saber,

p—q<= pVg,

y en este caso siempre tenemos —p. Esto puede resultar extrafio, pues en matematicas
acostumbramos a probar la implicacién p — g partiendo de que p es cierta, y rara vez
contemplamos la posibilidad de que la premisa sea falsa.

Aceptando esta definicién para a ¢ A’, podriamos probar atrocidades contra el sentido
comin como
lim +/z =27, o también que lim2 VI = -8,
T——

r——2

perdiendo de vista la nocién intuitiva de acercarnos al punto « a través de puntos de
A\ {a}, ademés de propiedades fundamentales como la unicidad del limite.

\

Noétense las diferencias con la definicién de continuidad en x: en primer lugar, podemos calcular
el valor del limite de f en puntos que no estan en el dominio de definiciéon de f. Aunque
tuviéramos definido f(a), este no influye en la existencia del limite ni en su valor. Por otro lado,
no tiene sentido hablar de limite en los puntos aislados de A, pero si de continuidad. De hecho,
como vismo anteriormente, toda funcién es continua en los puntos aislados de su dominio.

Al igual que la continuidad, el limite puede caracterizarse mediante sucesiones monodtonas. La
demostracién es completamente analoga a la que se hizo para la continuidad, y la omitiremos
en aras de la brevedad.

Proposicién 4.25 (Caracterizacién secuencial del limite funcional). Sea f : A — R una funcion,
a € A’y L € R. Son equivalentes:

(i) tim f(x) = L.
(ii) Para toda sucesion {z,} C A\ {a} con {z,} — «a, se tiene {f(z,)} — L.

(iii) Para toda sucesion mondtona {x,} C A\ {a} tal que {z,} — a, se tiene {f(zy)} — L.

La similitud entre las definiciones de continuidad y de limite se concreta en el siguiente hecho
elemental.

Proposiciéon 4.26. Sea f: A Ry aec AN A'. Entonces f es continua en a si, y sélo si,

lim f(x) = f(a).

Tr—a

Demostracion

(=) Si f es continua en a, para cualquier sucesiéon {z,} C A\ {a} con {z,} — a se
tiene {f(zn)} — f(a). Por la caracterizacién secuencial del limite, esto es equivalente
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a decir que

lim f(x) = f(a).

r—a
(<) Reciprocamente, si lim,_,, f(x) = f(a), entonces para todo ¢ > 0 existe 6 > 0

tal que 0 < |z —a|] < § = |f(z) — f(a)|] < e. La desigualdad sigue siendo cierta si
permitimos x = a, luego f es continua en a. |

. J

Esta equivalencia nos permite identificar un primer tipo de discontinuidades: aquellas en las que
existe el valor del limite en a € AN A’ pero no coincide con f(a). En este caso, redefiniendo
f(a) puede hacerse que la funcién f sea continua, lo que les da el nombre de discontinuidades
evitables.

Definicién 4.27. Decimos que f tiene una discontinuidad evitable en a € AN A’ cuando existe
el limite lim,_,, f(x) pero lim,_,, f(z) # f(a).

Queda por ver el caso en que a € A"\ A. Aunque no tengamos f definida en «, la existencia
de limite nos permite extender su definicién a dicho punto, y la funcién resultante, ademés, es
continua en a.

Proposicién 4.28. Sea f: A >Ry a € A"\ A. Son equivalentes:

(i) lim f(z) existe.

(ii) La extension

f(x) sixeA,

limg, o f(z) siz=a.

f:AU{a} =R, f(m):{
es continua en a.
(i)=(ii). Basta aplicar la proposicién anterior en «, ya que

f(a) = lim f(2) = 1im f(2).

T—Q

(ii)=(i). Sea {z,} C A (no hace falta eliminar o porque a ¢ A) con {z,} — a. Por
continuidad de f en «,

{f(@n)} = {f(za)} = fla),

y la caracterizacién secuencial del limite da que lim, .o f(z) existe y es f(a). [ |

\ J

A modo de resumen de lo probado anteriormente, enunciamos una proposicién que recoge la
relacion que existe entre limites y continuidad.
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Proposiciéon 4.29. Sea f: A — R una funcién e y € AU A"
» Siye ANA', f es continua en y <= lim, ., f(z) = f(y).
= Siye A\ A, f siempre es continua en f(y).
» Siye A"\ A, existe lim,_,, f(z) <= f puede extenderse de forma continua a y.
|

Al igual que la continuidad, el limite es una propiedad local de f. Esta establece que la existencia
y el valor del limite de una funcién en un punto o € A’ solo dependen de los puntos de

(a=6,a+6)N(A\{a}),
para 6 > 0 arbitrario.

Proposiciéon 4.30 (Caracter local del limite). Sea f: A -+ R, B C Ay 8 € B'. Entonces:

(i) Si f tiene limite en §, también lo tiene f|p en Sy ambos coinciden:

(FlB)() = lim fx).

lim
z—f0

(ii) Siexiste 6 > 0 tal que (8 —46,8+ )N (A\{B}) C B,y f|p tiene limite en 3, entonces f
tiene limite en 5 y ambos coinciden.

Demostracion

Esta demostracion no se vio en clase.

(i) Sea L = lim,_,, f. Dado e > 0,51 (0 < |z — | < d = |f(z) — L| < ¢) se cumple
para todo punto x € A, entonces en particular también para todo punto =z € B.

(ii) Sea L = lim,,g(f|p)(x). Dado ¢ > 0, por la definicién del limite de f|p existe
n > 0 tal que
re€B, 0<|z—B<n = |(fl)(x) —L| <e.

Tomamos r = min{n, d}. Six € Ay 0 < |x — | < r, entonces

ze(B-rB+r)n(A\{B}) C B,

y ademds |z — 8] < n; por tanto |f(z) — L| = |(f|p)(z) — L| < e. [ |

\

| Ejemplo

Problema. Calcular

, 2 +z—2
lim ———.
z—1 x—1

Resolucion. En primer lugar, aunque no sea necesario, discutimos por qué tiene

sentido este limite. En efecto, si f(z) = %, estd claro que

Dom(f) = R\ {1} = (—o0,1) U (1, +00).
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Por tanto,
1 € Dom(f) = (—00,1] U1, +00) = R.

Sea {zp} C R\ {1} con {z,} — 1. Para todo n,

o+ o0 —2 _ (zp— 1)(zn +2) 4o
Ty — 1 Tp — 1 e

donde el ultimo paso (dividir por x,, — 1 numerador y denominador) puede hacerse ya
que x, # 1. Al pasar al limite,

2
-2

lim Z0 I T2 g (a4 2) = 142 = 3,

n—o00 Ty — n—00

Como el valor del limite a lo largo de cualquier sucesién {z,} — 1 con x,, # 1 es 3,

concluimos que

. x24T —2

lim —— =
=1 -1

3.

.

Al igual que cuando estudidbamos la continuidad usando sucesiones monétonas, para estudiar
el comportamiento de una funcién al acercarnos a un punto de la recta real, podemos analizar
por separado lo que ocurre al aproximarnos por la izquierda o por la derecha. Esto motiva las
definiciones de limites a izquierda y a derecha, que veremos enseguida que no son sino casos
particulares de la nocién de limite que ya conocemos.

Dado A C Ry a € R, introducimos la notacién
A, ={r €A z<a}, At ={ze€A: z>a}.

Razonando por contrarreciproco, nos damos cuenta inmediatamente de que si o € A’, entonces
a€ (AF)Y U(AL), ya que si A no se acumula ni a la izquierda ni a la derecha de «a, entonces
no se acumula en a.

M

v € (AY
Definicién 4.31 (Limites laterales). Sea f: A — R.

» Siae (A]) (estoes, A se acumula a la izquierda de «), decimos que f tiene limite por
la izquierda en o cuando f|,- tiene limite L en «. En tal caso escribimos

lim f(x)=L.

T—a

» Siae (AY) (esto es, A se acumula a la derecha de ), decimos que f tiene limite por la
derecha en o cuando f| 4+ tiene limite L en a. En tal caso escribimos

lim f(x)=L.

z—at

Por supuesto, las propiedades del limite ordinario se trasladan a los limites laterales, lo que nos
da una triple definicién equivalente para los mismo.
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Proposicién 4.32. Para f: A > R, a € (A,) y L € R, son equivalentes:
(i) lim f(z)= L.
z—a—
(i) Ve>03>0: (z€A, a-d<z<a) = |f(z)—L|<e.
(iii) Para toda sucesion {z,} C A con =, < a'y {z,} — «, se tiene {f(z,)} — L.
(iv) Para toda sucesién creciente {x,} C A\ {a} con z, < ay {z,} — «a, se tiene {f(z,)} — L.

La version para el limite por la derecha se obtiene sustituyendo en (iv) “creciente” por “decre-
ciente”, x < a por > a en (i) y, en (ii), la condicién o« —d < x < a por a <z < a + 6.

La principal utilidad de los limites laterales es su relacién con el limite ordinario. Cuando A
se acumula solo a un lado de un punto a € A’, estd claro que las nociones de limite y limite
lateral son equivalentes, por lo que el resultado més interesante se tiene cuando A se acumula a
ambos lados de un punto o € A’

Proposicién 4.33. Sea f: A -+ R, a € A y L € R. Entonces:

(a) Si A se acumula a la izquierda de a pero no a la derecha, entonces

lim f(x) =L <= lim f(z)=L.

T T—a~

(b) Si A se acumula a la derecha de « pero no a la izquierda, entonces

lim f(zx) =L <= lim f(x)=L.

T—ro r—at

(c) Si A se acumula a la izquierda y a la derecha de «, entonces

lim f(x) =L <= lim f(z)=L= lim f(z).

r—Q T—a~ z—at

Demostracion

Las implicaciones hacia la derecha (=) son todas inmediatas, pues siempre podemos
pasar del limite de f al limite de una restricciéon cualquiera usando el cardcter local del
limite funcional.

Para las implicaciones a la izquierda (<), tomemos una sucesién monétona {z,} C

A\ {a} con {z,} — a:

(a) {zn} no puede ser decreciente por tanto es creciente y x,, < « para todo n, de
modo que {f(z,)} — L por el limite por la existencia de limite a la izquierda.

(b) Se sigue de un razonamiento analogo al de (a).

(¢) Si{xzy,} es creciente, usamos el punto (a), y si {x,,} es decreciente, el (b). En ambos

casos obtenemos {f(x,)} — L.

La caracterizacion secuencial del limite ordinario por sucesiones monétonas concluye la
prueba. |
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Como consecuencia del item (c), si los limites laterales a izquierda y a derecha de « no coinciden,
f no puede tener limite en el punto «. En particular, si f presenta este comportamiento en un
punto a € AN A’, no puede ser continua en a, independientemente del valor de f(a).

Definicién 4.34. Sea f: A > Ryae AN A tal que a € (AF) N (A, ). Si existen los limites
laterales a izquierda y a derecha de a pero

lim f(z) # lim f(x),

T—a— z—a™t

entonces f no es continua en a, y decimos que f tiene una discontinuidad de salto finito en a.
Y
J x
a

Problema. Determinar si es posible elegir f(1) para que la funcién

| Ejemplo

>

r—1

jz —1|°

sea continua en x = 1.

Resolucién. El dominio de f es A =R\ {1} y 1 € A’, luego para poder extender f de
forma continua a 1 debe existir el limite de f en 1. Dado que A se acumula a izquierda
y derecha de 1, esto es equivalente a que existan y coincidan los limites laterales.

Limite por la izquierda. Tomemos cualquier sucesién {z,} C A con x, < 1 para todo n
y {zn} — 1. Para z < 1 se tiene |z — 1| = 1 — z, luego

Ty — 1 Ty — 1

= = —1 paratodon
|z, — 1] 1—z, P ’

y por tanto {f(x,)} — —1. Asi, 111{1 flx)=-1.
z—1—

Limite por la derecha. Tomemos ahora {x,} C A con x,, > 1 para todo ny {z,} — 1.
Para z > 1 se tiene |z — 1| = x — 1, luego

-1 -1
Tn Tn =1 para todo n,

Zn — 1| @n—1
y por tanto {f(z,)} — 1. Asi, lim f(z) =1.
z—1t

Como los limites laterales existen pero no coinciden, no existe lim1 f(z). En consecuencia,
Tr—r

no hay eleccién posible de f(1) que haga a f continua en = = 1.

\ J

4.4 Limites en el infinito y divergencia de funciones

Nuestro objetivo ahora es extender la nocién de limite funcional en dos direcciones. Por un
lado, estudiaremos cémo se comporta una funcién cuando la variable crece o decrece sin cota,
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introduciendo el limite en el infinito. Por otro, en paralelo con las sucesiones divergentes, veremos
también la divergencia de funciones en puntos de R. Cerraremos con reglas basicas que permiten

interpretar los limites en el infinito como limites ordinarios.

Definiciéon 4.35. Sea A C R no mayorado, f: A — Ry L € R. Diremos que f tiene limite L

en +oo si para todo € > 0, existe K > 0 tal que
r€A >K = |f(zr)—L|<e.
En tal caso, escribimos

lim f(x)=L o f(x)—>L (z— +00).

T—-+00

De forma anéloga tenemos la definicién de limite en —oo.

Definicion 4.36. Sea A C R no minorado, f: A - R y L € R. Diremos que f tiene limite L

en —oo si para todo € > 0, existe K < 0 tal que
€A <K = |f(z)-L|<e.
En tal caso, escribimos

lim f(zr)=L o f(z)—L (x— —o0).

T—r—00

Por supuesto, estas nuevas nociones de limite pueden caracterizarse mediante sucesiones que
divergen a 400 0 —oo. Omitimos la demostracion porque sigue la misma idea que la que hicimos

para la continuidad.

Proposicion 4.37. Sea A C R no mayorado, f: A — Ry L € R. Son equivalentes:
6) lim_ fa)=
(ii) Para toda sucesion {z,} C A con {z,} — 400, se tiene {f(z,)} — L.

(iii) Para toda sucesion creciente y no mayorada {z,} C A, se tiene {f(z,)} — L.

| Ejemplo

e

Problema. Calcular
A Vet va—va)

Resolucion. Racionalizamos con el conjugado:

n NN IL‘—I-\/»)—:L' B
' \Z +\f vz + +\f

Como x — +oo, podemos restringirnos a considerar valores de x > 0, lo que nos
permite dividir numerador y denominador por y/z:

Vi NG 1

Jerve+yve Va(1+=+1)  ivE 41
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1
Como — — 0 cuando x — +00, se obtiene

JT
. / 1

. J

El siguiente resultado nos demuestra que el concepto de limite funcional generaliza al de limite
de una sucesién. Para ver esto basta recordar que una sucesiéon {x,} no es mds que una funcién
S : N — R con s(n) = x,. Dado que N no estd mayorado, tiene sentido hablar de limite
(funcional) en 400 de la funcién S:

Proposicion 4.38. Sea S:N — R y L € R. Entonces
lim S(z)=L <= {S(n)}— L.

T—r—+00

Demostracion

Esta demostracion no se vio en clase.

(=) Basta tomar la sucesién {n}, que diverge positivamente: por caracterizacién
secuencial del limite en 400, {S(n)} — L.

(<) Supongamos {S(n)} — L. Sea {y,} C N una sucesién con {y,} — +o0.

Dado € > 0, existe ng € N tal que |S(k) — L| < € para todo k > ngy. Como {y,} — +o0,
existe m € N con y,, > ng para todo n > m, y entonces |S(y,) — L| < € para n > m.

Por tanto, {S(y,)} — Ly, por la caracterizacién secuencial, lim,_, 1o S(z) =L. W

. J

El carécter local del limite en +00 se enuncia diciendo que para estudiar el limite de una funcién
en +o00, basta considerar valores de la variable suficientemente grandes.

Proposiciéon 4.39. Sea f: A — R y supongamos que A no estd mayorado. Fijado p > 0, sea
B={xe€ A: x> p}. Entonces, para cualquier L € R,

lim f(z)=L <= lim (f|p)(z)=

T—r-+00 Tr—r-+00

Demostracion

FEsta demostracion no se vio en clase.

(=) Puesto que lim,_,~ f(x) = L, dado € > 0 encontramos K > 0 tal que si z > K,
entonces |f(z) — L| < e. En particular, esto vale para x € B con = > K.

(<) Sea {x,} C A con {x,} — +oo. Por definicién de divergencia a +00, existe ng € N
de forma que, si n > ng, entonces xz,, > p, luego x,, € B. Entonces, para n > ng:

{f(zn)} = {flB(zn)} = L.
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Pasamos ahora al estudio de un tipo concreto de sucesiones que no tienen limite en un
punto de acumulacién de su dominio de definicién: aquellas en las que las imagenes se hacen
arbitrariamente grandes o pequenias al acercarnos a dicho punto.

Definicién 4.40. Sea f: A >Ry aec A'.

(i) Diremos que f diverge a +00 en « (y escribiremos f(z) — +oo (z — «)) si

VK>030>0: 2€A, 0<|z—a|<d = f(z)> K.

(ii) Andlogamente, f diverge a —oo en « (y escribiremos f(z) - —oo (x — «)) si
VK<030>0: 2€A, 0<|z—0a|<d = f(z)<K.

La divergencia de una funcién en un punto puede caracterizarse mediante sucesiones. Por

supuesto, en este caso se tendra que la sucesiéon de imagenes es una sucesion que diverge a +o0.

Damos el resultado para divergencia hacia +o0, pues el otro caso es analogo. La demostracién a
estas alturas deberia ser un ejercicio sencillo.

Proposicion 4.41. Son equivalentes:
(i) f(z) = 400 (x = ).
(ii) Para toda sucesion {z,} C A\ {a} con {z,} — «a, se tiene {f(zy)} — +o0.

(iii) Para toda sucesion mondtona {z,} C A\ {a} con {z,} — «, se tiene {f(z,)} — +o0.

Nota: Como en el caso de sucesiones, una funcién que diverge a +00 en un punto esta
muy lejos de tener limite alli. No es aconsejable decir que una funcion tiene limite +oo
en « ni escribir lim,_,, f(z) = +o00; la formulacién que debemos seguir para evitar
confusiones es f(x) — 400 cuando =z — a.

. J

Por supuesto, la divergencia a +c0 en « es una propiedad local cuyo enunciado puede trasladarse
directamente del de limite en a.

Dado a € A’, podemos hablar de divergencia lateral a 400 cuando las correspondientes
restricciones de f a izquierda o derecha de « presenten este tipo de divergencia.

Definicién 4.42. Sean f: A - Ry a € A’. Entonces:

(i) Si @ € (Al), decimos que f diverge a +o0o por la derecha en « si flax — 400 cuando
(x — «). En tal caso, escribimos f(z) = +oco (z — a™).

(ii) Sia € (A,)', decimos que f diverge a +oo por la izquierda en a si f|,- — +00 cuando
(r — «). En tal caso, escribimos f(x) — +o0 (z — a7).

Como cabe esperar, esta nocién admite una caracterizacién K — § y mediante sucesiones
monodtonas, que omitimos por cuestiones de brevedad.

Definicién 4.43. Sea f: A —+Ryaec ANA conaec (Af) N(A;).

a

= Decimos que f tiene en a una discontinuidad de salto infinito si uno de los limites laterales
existe pero la funcién diverge a +00 0o —oo al otro lado de a.
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= Decimos que f tiene en a una discontinuidad asintdtica en a si f diverge a +00 0 —00 a
ambos lados de a.

Yy Y

N . .

Para completar el esquema, describimos ahora la divergencia de una funciéon en +oo y en —oc.
Definicion 4.44. Sea f: A — R con A no mayorado.

» Diremos que f diverge a +00 en 400 y escribiremos f(z) — 400 (z — +00) si

VK>03IMeR: z€A, 2 >M = f(z)> K.

» Diremos que f diverge a —oo en 400 y escribiremos f(z) - —oo (x — +00) si

VK<03IMeR: z€A, z>M = f(zr)<K.

Proposicion 4.45. Sea f: A — R con A no mayorado. Son equivalentes:
(i) f(z) = 400 (x — +o0).
(ii) Para toda sucesiéon {z,} C A con {z,} — +o0, se tiene {f(xy,)} — +o0.

(iii) Para toda sucesion {z,} C A creciente y no mayorada, se tiene { f(z,)} — +o0.

La nocién de divergencia a +0o en —oo se obtiene de forma analoga, al igual que la caracterizacién
mediante sucesiones.

Definicion 4.46. Sea f: A — R con A no estd minorado.
» f(x) > 40 (x— —o0)siVK eRIMeR: z€ A, 2 <M = f(z)> K.
n fx) > —0(r— —0)siVKERIMeR: z€ A, o< M = f(r) < K.
Proposicion 4.47. Sea f: A — R con A no estd minorado. Son equivalentes:
(i) f(z) = 400 (x — —o0).
(ii) Para toda sucesion {z,} C A con {z,} — —oo, se tiene {f(x,)} — +oo.
(iii) Para toda sucesion {z,} C A decreciente y no minorada, se tiene {f(zy,)} — +oc.

Nuevamente, cambiamos “> K” por “< K” para la divergencia hacia —oo. |

Finalmente, vemos que podemos transformar un limite en 400 con uno en —oo y viceversa,
ademas de transformar cualquiera de ellos en un limite lateral en 0.
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Proposicién 4.48. Sean A C R no mayorado, f: A — Ry L € R. Admitimos también que L
pueda ser el simbolo 400 0 —o0.

(a) Consideramos g : —A — R dada por g(z) = f(—z) para todo = € —A. Entonces
f(z) > L (x —+0) <= g(x)— L (z— —o0).
Esto suele escribirse de forma mas directa como
f(z) = L (x — —x) <= f(—z)— L (z— +0).
(b) Sean B={yeR": 1/y € A} y h: B — R dada por h(y) = f(1/y). Entonces 0 € B y

f(x) = L (x = +00) <= h(y)—= L (y—0"),

es decir,
f(x) = L (x— +o00) <= f(1)y)—= L (y—07).

Combinando (a) y (b) podemos transformar un limite en —oo en un limite en 0 por la izquierda.

Demostracion

Esta demostracion no se vio en clase.

(a) Sea {zn} C A con {z,} — +o0, entonces {—x,} C —Ay {—z,} = —o0. Asi,
{f(zn)} — L equivale a {g(z,)} — L. El otro sentido se hace de forma idéntica.

(b) (=) Sea {y,} C B una sucesién con {y,} — 0. Entonces, i € Ay {yn} — +oo.
Por tanto {f (yin)} = h(y,) — L.

(<) Reciprocamente, si {z,} C A con z,, — 400, entonces existe m € N de forma que
x, > 0 para n > m. Entonces, para n > m se tiene {i} C A, { 1 } — 0. Por tanto,

In

{f@n)} = {h(z)} = L. n

N

| Ejemplo

s N

Problema. Determinar razonadamente si existe

lim z e!/*.
r—0

Resolucion. Tenemos que Dom(:vel/ ) = R*, que se acumula a la izquierda y a la
derecha de 0. Por tanto, podemos estudiar los limites laterales x — 07 y x — 0.
Usamos el cambio y = 1/, de modo que

Limite por la izquierda. Si x — 0~ entonces y = 1/x — —o0 y

Yy
, , €
lim zel/* = lim — =0.

x—0~ y——oo Yy
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Limite por la derecha. Si x — 0 entonces y = 1/x — +oo y

ey
— — +00,
Y

lo que nos da ze'/* — 400 cuando z — 0.

Como uno de los limites laterales no existe, el limite no existe.

Nota. En el ejemplo anterior hemos usado que
lim — =0 (a>1, p>0).

Hasta ahora solo hemos justificado esta afirmaciéon cuando x =n € Ny p € N. La
version general con x € R se demostrard més adelante, cuando dispongamos de una
definicion rigurosa de las funciones exponencial, logaritmo y potencia. Mientras tanto,
la daremos por conocida para poder presentar ejemplos no triviales de la utilidad del
cambio de variable.

\ J

4.5 Propiedades de las funciones continuas

Estudiaremos dos resultados fundamentales sobre funciones continuas en intervalos reales. El
primero afirma que si una funcién continua toma dos valores dentro de un intervalo, entonces
toma también todos los valores intermedios; dicho de otro modo, las funciones continuas
transforman intervalos en intervalos. El segundo identifica un caso especialmente importante: si
el intervalo de partida es cerrado y acotado, su imagen también lo es; en particular, la funcién
alcanza un maximo y un minimo. Este puede considerarse el primer resultado de optimizacion
que se vera en el curso de célculo.

Empezamos con una sencilla observacion: si una funcién continua es positiva en un punto, se
mantiene positiva en un pequeno entorno de dicho punto. A esto se le llama propiedad de
conservacion del signo.

Proposiciéon 4.49. Sea f : A — R una funcién continua en un punto x € A. Si f(x) > 0,
entonces existe § > 0 tal que, para todo y € A con |y — x| < ¢, se tiene f(y) > 0. Andlogamente,
si f(z) < 0, entonces existe 6 > 0 tal que |y — x| < § = f(y) < 0.

Demostracion

Si f(z) > 0, tomando € = f(z) en la caracterizacién (¢—¢) de la continuidad, existe
0 > 0 tal que |y — z| < 0, entonces:

f) = f@) < flx) = —fl@)<fly)-Fflz) = [fly)>0.

El caso f(z) < 0 se reduce al anterior aplicAndolo a — f, que es continua en x y verifica
(=f)(x) > 0. u

N J

Teorema 4.50 (de los ceros de Bolzano). Sean a,b € Rcona <by f:[a,b — R una
funcién continua tal que f(a) <0y f(b) > 0. Entonces existe ¢ € (a,b) tal que f(c) = 0.
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Demostraciéon

Sea C = {z € [a,b] : f(z) < 0}. El conjunto C es no vacio (contiene a a) y esta
acotado, luego podemos considerar ¢ = sup C' € [a, b]. La idea es probar que f(c) = 0.

fla)|<0

Razonamos por reducciéon al absurdo: si f(c) < 0, entonces por conservacién del signo
existe un 6 > 0 tal que si « € [a,b] y |z — ¢|] < d = f(x) < 0. Nos damos cuenta de
que ¢+ 6 < b, pues si se tuviera ¢ < b < ¢+ § entonces f(b) < 0, que contradice
nuestra hipétesis f(b) > 0. Si tomamos x € (¢, ¢+ J) obtenemos un x € [a,b], = > c,
con f(x) < 0, que contradice que ¢ sea el supremo de C.

Supongamos ahora que f(c¢) > 0, de nuevo por conservacién del signo existiria § > 0
tal que |z —¢| < § = f(z) > 0. Entonces, todos los puntos de x € C deben cumplir
|x — ¢| > §. Ademés, como c es el supremo de C, también ha de darse x < ¢, es decir,
|x — ¢| = ¢ — . Combinando esta informacién tenemos que

reC=x<c—0.

Esta desigualdad nos dice que ¢ — § es un mayorante de C', lo cual es imposible porque
c—0<e.

Concluimos f(c) = 0. [ |

- J

Por supuesto, el teorema sigue siendo cierto si f(a) > 0y f(b) < 0, ya que basta con aplicar la
version anterior a —f.

Ademas, el teorema de Bolzano puede trasladarse para encontrar valores de f entre f(a) y f(b),
siempre que estos sean distintos. La forma clasica de enunciar esta propiedad es la que sigue:

Teorema 4.51 (del Valor Intermedio). Sea f: A — R una funcién continua. Si [ C A es un
intervalo, entonces f(I) es un intervalo. Esto es, si o, 8 € f(I) con o < 3 entonces [, 5] C f(I).

Demostracién

Basta comprobar que si a, 8 € f(I) con a < By A € (a, 3), entonces A € f(I).

Sean z,y € I tales que f(z) =ay f(y) = 8. Como f(x) # f(y), no puede darse x = y.
Asi pues, distinguimos casos segtn el orden de = e y.

Si x < y, consideramos [z,y] C I y la funcién continua g(t) = f(t) — A en [z,y]. Se
tiene g(x) =a—A <0y g(y) = — A > 0. Por el teorema de Bolzano, existe ¢ € (z,y)
con g(c) =0, es decir, f(c) =X € f(I).

El caso y < z es idéntico usando [y, z| y la funcién g(t) = A — f(¢t). [ |
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El teorema anterior motiva la siguiente definicién:

Definicién 4.52. Sea I un intervalo no trivial y f : I — R. Decimos que f tiene la propiedad
del valor intermedio si, para todo subintervalo J C I, f(J) es un intervalo.

Por supuesto, si f: A — R es una funcién continua e I C A es un intervalo no trivial, entonces
f|r satisface la propiedad del valor intermedio, ya que f|; sigue siendo continua para todo
J C I,y por tanto f|7(J) = f|s(J) es un intervalo por el teorema del valor intermedio.

Lo interesante de esta distincién es que el reciproco no es cierto; existen funciones que satisfacen
la propiedad del valor intermedio sin ser continuas, aunque en estos momentos no disponemos
de las herramientas necesarias para definirlas de forma sencilla. Queda pues prometido este
contraejemplo para capitulos posteriores del curso.

Lo que si podemos ver sin apenas esfuerzo es que no es suficiente con que f(I) sea un intervalo
para que f: I — R tenga la propiedad del valor intermedio:

s N

Contraejemplo. Sea f : [0, 1] — R dada por

) 1—2 size(0,1],
f(a:)—{ 0 siz=0.

Tenemos de forma clara f([0,1]) = [0,1), que es un intervalo, Sin embargo, tomando
J =10,3] C I, se tiene f(J)={0}U [% 1), que no es un intervalo.

\ J

Por otro lado, la hipétesis de que I sea un intervalo es fundamental para garantizar que f([) es
un intervalo para una funcién continua f, como ilustra el siguiente resultado:

Proposiciéon 4.53. Si A C R no es un intervalo, existe una funcién continua f : A — R tal
que f(A) tiene exactamente dos elementos.

Demostracion

FEsta demostracion no se vio en clase.

Como A no es un intervalo, existen z,y € Ay z € R\ A con z < z < y. Definimos
f+A—Rpor
t—=z
)= —— Vit e A.
El denominador no se anula (porque z ¢ A) y f es cociente de funciones continuas,
luego es continua en A. Ademds |f(t)| = 1, asi que f(t) € {—1,1} para todot € A,y

como f(y) =1y f(z) = —1, resulta f(A) = {—1,1}. [ |

\ J

Como motivacion para la segunda propiedad fundamental de las funciones continuas, nos
preguntamos si, en el teorema del valor intermedio, puede conocerse el tipo de intervalo f(I) a
partir del tipo de I. En general no hay relacién: por ejemplo, una funciéon constante transforma
cualquier intervalo en un intervalo cerrado y acotado formado por un tnico punto, por lo que la
acotacion de f(I) no nos da ninguna informacién sobre la de 1.
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Un ejemplo menos trivial es la funciéon f : R — R dada por

f(z)

R
14 2|

No es dificil demostrar que f es continua e inyectiva con f(R) = (—1,1), y su inversa, que es la
funcién f~1':(-1,1) — R dada por

1
1 -yl

también es continua y envia el intervalo acotado (—1,1) en R, que no estd ni mayorado ni
minorado.

)

Tampoco se conserva ser abierto o cerrado: el valor absoluto lleva (—1,1) a [0,1), y con
I=11,400)y f(z) =1/x aparece f(I) = (0, 1], que no es cerrado.

Sin embargo, hay un caso que si se preserva: cuando I es cerrado y acotado, también lo es f(I).
Esto es precisamente el contenido del teorema de Weierstrass.

Teorema 4.54 (de Weierstrass). Sean a,b € R con a < by sea f : [a,b] — R una funcién
continua. Entonces, el intervalo f([a,b]) es cerrado y acotado.

Demostracion

Empezamos probando que f([a,b]) es un conjunto acotado, es decir, que el conjunto
{If(x)| : x € [a,b]} estd mayorado.

Razonamos por contradiccion: si no estd mayorado, para cada n € N existe x,, € [a, ] tal
que | f(xy)| > n. Como {z,} es una sucesién acotada, el teorema de Bolzano-Weierstrass
nos proporciona una sucesion parcial convergente: {z,(,)} — = € R.

Como a < x,, < b para todo n, es claro que z € [a, b], lo que nos permite usar que f es
continua en z, para concluir que {f(z4(,))} — f(x). Pero esto es una contradiccién,
ya que | f(2,(n))| > o(n) > n para todo n € N, luego {f(z,(n))} — +o0.

Sabido que el intervalo J = f([a,b]) estd acotado, tomamos o« = inf J, § = supJ y
tenemos (o, ) C J C [a, (], luego bastara probar que a, € J para concluir que
J = [a, B], un intervalo cerrado y acotado.

Para cada n € N, puesto que o + 1/n no es minorante del conjunto f([a,b]), por
definicién de infimo existird un y, € [a,b] verificando que o < f(yn) < a + 1/n.
Obtenemos asi una sucesion {y,} de puntos de [a, b] tal que {f(yn)} — a.

Aplicando aqui una vez mas el teorema de Bolzano—Weierstrass, obtenemos una sucesién
parcial {y,;)} — y € [a,b]. Puesto que f es continua en el punto y, deducimos que

{f(Wrn))} — f(y). Ahora bien, {f(y-(;,))} es una sucesién parcial de {f(yn)}, luego
{f(Wrm))} = @y concluimos que a = f(y) € f([a,b]), como queriamos.

Para comprobar que también 5 € f([a, b]) se razona de manera completamente analoga.
[ |

. J

Al igual que hicimos con sucesiones, definimos a continuacién la monotonia de una funcién de
la forma que cabria esperarse. Veremos entonces dos resultados que relacionan la monotonia
de una funcién y su continuidad, y como consecuencia, un tercero que nos permite deducir la
continuidad de la funcién inversa de una funcién inyectiva.
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Definicién 4.55. Sea f: A — R. Diremos que f es

» crecientesi: x,y € A,z <y = f(z) < f(y).

» estrictamente creciente si: x,y € A, z <y = f(z) < f(y).

» decreciente si: z,y € A, x <y = f(x) > f(y).

» estrictamente decreciente si: x,y € A, z <y = f(z)> f(y).

= mondtona si f es creciente o decreciente.

= estrictamente mondétona si f es estrictamente creciente o estrictamente decreciente.
Es facil observar que las tinicas funciones crecientes y decrecientes a la vez son las constantes.

Nétese también que una funcién es estrictamente mondtona si es mondtona e inyectiva.

Para trabajar con comodidad, dado B C A, decimos que f es creciente en B si f|p es una
funcién creciente, con idéntica definicién para las otras 5 propiedades vistas.

Por ejemplo, la funcién valor absoluto x — |z| es decreciente en (—oo, 0] y creciente en [0, +00),
pero no es mondtona en R.

Sabemos que toda funcién estrictamente mondtona es inyectiva. A poco que se piense, el reciproco
es falso en general. Sin embargo, podemos obtenerlo bajo ciertas condiciones adicionales.

Teorema 4.56. Sea I un intervaloy f: I — R una funcién continua e inyectiva. Entonces f
es estrictamente mondtona.

La demostracién de este resultado es técnica, y conviene dividirla en varios pasos para que sea
mas facil de leer y comprender.

Lema 4.57 (Lema 1). Dados a,b € R con a < b, si f : [a,b] = R es una funcién continua e
inyectiva, tal que f(a) < f(b), entonces f(a) < f(x) < f(b) para todo z € [a,b|.

Demostracion del lema

Razonemos por reduccién al absurdo:

Si f(z) < f(a), aplicamos el teorema del valor intermedio a f/(, 5 que es continua y
toma los valores f(x) y f(b), luego debe tomar también el valor intermedio f(a). Por
tanto, existe z € [z, b] tal que f(z) = f(a), pero esto contradice la inyectividad de f,
ya que a # z.

Anélogamente, si fuese f(z) > f(b) aplicaremos el teorema del valor intermedio a
flla,z]; obteniendo z € [a, ] con f(z) = f(b), contradiciendo otra vez la inyectividad
de f. |

. J

Lema 4.58 (Lema 2). La funcién del Lema 4.57 es creciente.

Demostracion

Dados z,y € [a,b] con x < y, por el primer lema tenemos f(z) < f(b), de hecho
f(z) < f(b), yaque x < by f es inyectiva. Pero ahora podemos aplicar el mismo lema
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a fl[z,), que es continua e inyectiva, con f(x) < f(b), obteniendo f(z) < f(y), como
queriamos. |

\

Demostracion del teorema

Esta demostracion no se vio en clase.

Basta probar que f es mondtona, pues de la inyectividad se deduce que la monotonia
es estricta. Empezamos observando que el Lema 4.58 nos resuelve directamente el caso
en que [ es un intervalo no trivial cerrado y acotado [a, b].

En efecto, si f(a) < f(b), entonces aplicamos el resultado al pie de la letra. Si en
cambio f(a) > f(b), aplicamos dicho lema a la funcién — f. Por supuesto, f(a) = f(b)
no puede tenerse ya que f es inyectiva.

Vamos al caso general: I es un intervalo arbitrario y f : I — R es continua e inyectiva.
Razonando por reduccién al absurdo, si f no es monoétona, existen x1,y1,x2,y2 € 1
tales que:

vy <y, w2<y2, flz1)> fly), [flx2) < f(ya2).

Escribiendo a = min{z,z2} < méax{yi,y2} = b, por ser I un intervalo, tenemos
[a,b] C I, lo que permite considerar f|,, que es continua e inyectiva. Como
Z1,Y1,%2,Yy2 € [a,b], dicha funcién no puede ser mondtona, lo cual contradice di-
rectamente lo demostrado en el paso anterior. |

\

J

De la monotonia de una funcién también puede pasarse a la continuidad. El siguiente resultado

no requiere que f esté definida en un intervalo, pero si que lo sea su imagen.

Teorema 4.59. Si f: A — R es una funcién monétona, y f(A) es un intervalo, entonces f es

continua.

Demostracién

FEsta demostracion no se vio en clase.

Podemos evidentemente suponer que f es creciente, pues en otro caso bastaria usar la
funciéon — f, cuya imagen también es un intervalo.

Fijado x € A, para probar que f es continua en el punto z, tomamos una sucesién
mondtona {z,} de puntos de A tal que {z,,} — = y bastara ver que {f(x,)} — f(z).
Cubriremos solo el caso en que {x,} es una sucesion creciente, pues el otro se sigue de
un razonamiento enteramente analogo.

Por ser {z,} creciente, para todo n € N tenemos z,, < zp41 < z, luego f(z,) <
f(xni1) < f(x), ya que f es creciente. Por tanto, la sucesién {f(x,)} es creciente y
mayorada por f(z), luego convergente. Escribimos
L= 1 .
ol f @)
En principio tenemos que L < f(x), pero en seguida vemos que suponer que L < f(x)
nos lleva a una contradiccién.
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En efecto, si tomamos un y € R tal que L < y < f(x), tenemos f(x1) <y < f(z) v,
usando que f(A) es un intervalo, debera existir a € A tal que f(a) = y.

Si fuese x < a el crecimiento de f nos daria f(z) < f(a) =y, que no es cierto. Pero si
se tuviese a < x, como {z,} — z, podriamos tomar m € N tal que a < x,, con lo que
y = f(a) < f(zm) < L, que tampoco puede ser cierto.

Hemos demostrado que L = f(x), es decir, {f(z,)} — f(x) como queriamos.
|

- J

Conviene resaltar que, en el teorema anterior, el conjunto A no tiene por qué ser un intervalo.

Para una funcién continua e inyectiva, es natural preguntarse si la inversa también sera continua.
Usando la relacién entre las graficas de f y de f~! es facil convencerse de que esto no tiene por
qué ser siempre asi.

Sean A =1[0,1[U {2}y f: A — R dada por

El caracter local de la continuidad nos dice inmediatamente que f es continua, y también es
facil comprobar que f es inyectiva, con f(A) = [0, 1]. La inversa f~!:[0,1] — R viene dada por

71 _ y’ y€[071[)
[y = 2 y—1

Tomando la sucesién {y,} con y, =1 — L se tiene {y,} — 1 pero {f1(yn)} = {yn} = 1 #2=
f71(1). Por tanto, f~! no es continua en 1. Las graficas ayudan a visualizar que f es continua
mientras que f~! no lo es:

Yy T
2 2 °
1 ° 1 )
! 1 2 ! 1 5 Y
Grafica de f Gréafica de f~1

Como podemos adivinar, esta situacion es posible porque A no es un intervalo. El resultado al
que queremos llegar afirma que, siempre que A sea un intervalo y f continua e inyectiva, f~!
también sera continua. Para ello, necesitamos un resultado preliminar que es interesante por si
mismo.

Proposicién 4.60. Si f : A — R es una funcién estrictamente creciente, entonces f~1 : f(A4) —
R también es estrictamente creciente. Si f es estrictamente decreciente, f~! también lo es.
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Demostracién

FEsta demostracion no se vio en clase.

Supongamos que f es estrictamente creciente. Tomamos u,v € f(A) con u < vy sean
r = fl(u), y = f~1(v). Si fuese y < z, aplicando que f es creciente tendriamos
v = f(y) < f(x) = u, que es una contradiccién, luego deberd ser = < y, es decir,
f~Hu) < f~(v). Esto prueba que f~! es estrictamente creciente, como queriamos.
En el caso de que f sea estrictamente decreciente, se razona de forma enteramente
analoga. |

\ J

Teorema 4.61. Si I es un intervalo y f : I — R es estrictamente monétona, entonces f~! es
continua. En particular, si f es continua e inyectiva, entonces f~! es continua.

Demostracion

FEsta demostracion no se vio en clase.

En efecto, acabamos de ver que f~!: f(I) — R también es estrictamente monétona,
pero su imagen es un intervalo, ya que f~(f(I)) = I, luego f~! es continua. [ |




Capitulo 5

Funciones derivables

La nocion de limite aparece por primera vez en la antigua Grecia, en el contexto de los problemas
de cuadratura y rectificacién, en los que se pretenden medir el perimetro y el area de una
figura plana curvilinea. Fudoxo y Arquimedes propusieron el método de exhaucion, mediante el
cual se aproximaron areas y perimetros de figuras curvilineas mediante poligonos inscritos y
circunscritos cada vez mas finos, en lo que puede considerarse una idea primitiva del concepto

de paso al limite.
S
7N

]
4

N_——

/\

La cuestiéon geométrica de aproximar contornos curvilineos a través de rectas aparece tacitamente
en lo que consideramos uno de los primeros antecedentes para la nocién de derivada, que es el
problema de las tangentes: dada una curva y un punto sobre la misma, hallar la recta que mejor
aproxima a la curva en ese punto.

Fermat aborda este problema con su método de la adecuacion, que era un algoritmo disenado
para encontrar extremos de funciones: se escribe f(a + h) en funcién de f(a) y se aplican las
mismas reglas que para el cdlculo de extremos, esto es, se desprecian en un cierto sentido los
términos de orden superior a h. Su condicién conduce, en notacion moderna, a que la pendiente
buscada sea el limite de las pendientes de las secantes.

Para ilustrarlo, consideremos la siguiente situacién simplificada: sea I C R un intervalo no
trivial y f : I — R continua. El teorema del valor intermedio nos permite interpretar la grafica

Gr(f) = {(z, f(z)) €eR*: z €I}

como una curva del plano. El problema consiste por tanto en encontrar, para un punto dado
a € I, la recta tangente a Gr(f) en (a, f(a)). El método de Fermat sugiere considerar rectas
secantes que pasan por (a, f(a)) y (b, f(b)) para b € I con b # a, y estudiar qué ocurre cuando
b se aproxima a a.

99
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La ecuacién punto-pendiente de una recta de R? que pasa por (a, f(a)) tiene la forma
y— f(a) =m(z —a).
Si imponemos que dicha recta pase por un punto (b, f(b)) con b # a, obtenemos

£0) = (@)

f0) = fla)=mb—a) = m="p—

Por tanto, la pendiente de la recta tangente sera la magnitud obtenida al calcular

L S0) ~ f(a)
b—a b—a ’

que es lo que solemos denotar como f’(a) cuando dicho limite es un nimero real.

Paralelamente, Descartes, quien era muy critico con los razonamientos de Fermat, lleg6 a la
misma conclusion usando su método de las normales. Segin este, se deberia tomar otro punto
variable sobre la curva, y calcular la ecuacién de una circunferencia con centro (0,0) que pase
por ambos puntos. La ecuacion que determina las intersecciones entre la circunferencia y la
curva es de segundo grado, asi que para hallar la circunferencia tangente bastaba con igualar
el discriminante a cero. Conocido el centro, se determinaban facilmente las rectas normal y
tangente a la curva en el punto.

Casi al mismo tiempo, la fisica impulsa la misma idea desde otra direccién: describir tasa de
variacion instantdnea. La velocidad de un movil, concebida inicialmente como media en un
intervalo de tiempo, debe definirse en el instante. Esto obliga a pasar del cociente incremental

As As

— a im —,

At At—0 At
que puede entenderse como la version fisica de la pendiente de la secante que desemboca en la
pendiente de la tangente.

Analiticamente, puede comprobarse que la recta tangente a Gr(f) en (a, f(a)) es la mejor
aprozimacion afin de f cerca de a. Conocida la ecuacién que determina su grafica, es facil
calcular cudl es esta funcién, que no es otra que:

r(z) = f(a) + f'(a)(z - a).
Maés concretamente, r(x) es el inico polinomio de primer grado que cumple

o 1) = (@)

Tr—a xr—a

=0.



Capitulo 5. Funciones derivables 101

La identidad anterior puede leerse como sigue: el error cometido al aproximar f(x) por r(x)
cerca de a es de orden inferior a z — a.

La lectura geométrica y la analitica son, por tanto, dos caras de la misma moneda: la existencia
de f’(a) asegura que f es localmente “casi lineal”, y la pendiente de esa linealizacién coincide
con la de la recta tangente en (a, f(a)).

5.1 Definiciéon de derivada

Iniciamos el estudio del célculo diferencial introduciendo el concepto de derivada de una funcién,
que se obtiene como el limite concreto que acabamos de introducir. Nuestros primeros resultados
consistiran en la relacion entre derivada y continuidad, y la importancia de las derivadas laterales,
en analogia con los limites laterales.

Definicién 5.1. Sea f: A + Ry a € AN A'. Consideramos la funcién
f(z) = f(a)

r—a

fa: AN{a} — R, fa(z) =

Como a € (A\ {a})’, podemos preguntarnos si f, tiene limite en a. Pues bien, se dice que f es
derivable en a si f, tiene limite en a. En tal caso, dicho limite recibe el nombre de derivada de

f en a y se denota por
. f(x) = f(a)
"(a) =1 .
fa) = lim ——
Dado B C AN A’, decimos que f es derivable en B si es derivable en todo punto de B.
Sea Ay € AN A’ el conjunto de puntos donde f es derivable. Si A; # (), podemos definir la
funcion derivada de f como

A — R, fo’(x)zlimM.

y—=r oy —

Resaltamos que no tiene sentido discutir la derivabilidad de una funcién en puntos
donde no estd definida ni en sus puntos aislados. El caso més interesante es cuando A
es un intervalo no trivial de R, ya que A C A’ y, por tanto, podemos hablar de derivada
en todo punto de A.

. J

Como los limites son invariantes por traslaciones, podemos hacer el cambio de variable x = a+ h,
de modo que si x — a entonces h — 0, y obtenemos una definicién equivalente de derivada que
a veces resulta util para hacer los calculos:

fla) — 1w F@E D) = Fa)

h—0 h

Proposicién 5.2. Si f: A — R es derivable en a € AN A’, entonces f es continua en a.

Demostracion

La demostracion es bien sencilla. Como a € AN A’, serd continua en a si lim,_,, f(z) =
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f(a), y vemos que

lim (£(2) — f(@) = tim L2 =S

T—a T—a T —a

(x—a) = f'(a)-0 = 0.

Dicho en modo equivalente, si f no es continua en a, no puede ser derivable en a. H

N J

El caréacter local del limite funcional se traslada inmediatamente a la derivada. Notese que en
esta proposicién no necesitamos eliminar el punto base del subconjunto B, pues f|p tiene que
estar definida en dicho punto.

Proposicién 5.3 (Caracter local de la derivabilidad). Sean f: A — R una funcién, BC Ay
be BNB C AnA
(1) Si f es derivable en b, entonces f|p es derivable en b, con (f|g)'(b) = f'(b).

(1) Si f|p es derivable en b y existe 6 > 0 tal que (b—0,b+ ) N A C B, entonces f es
derivable en b.

Como en otras situaciones previas, el cardcter local suele aplicarse tomando un intervalo abierto
IdeRtalquebely
B=1INA,

con lo que f es derivable en b si, y s6lo si, lo es f|p, en cuyo caso ambas derivadas coinciden.

Usando limites laterales llegamos logicamente a las derivadas laterales. Recordamos que el
estudio de estos sélo tiene interés cuando A se acumula a ambos lados del punto en cuestién.
Por tanto, para estudiar las derivadas laterales nos restringimos a ese inico caso que interesa.

Definicién 5.4. Sea a € ANA' N (A}) N (A,). Decimos que f es derivable por la izquierda
en a si f, tiene limite en a por la izquierda, y derivable por la derecha en a si f, tiene limite
por la derecha en a. En esos casos, escribimos

Flat) = 1im 1@ —F@) Flas) = 1 {@=I@

r—a+ €T — Q r—a— T — a

La relacién entre el limite ordinario y los limites laterales nos da directamente la siguiente
relacion:

Proposicién 5.5. Para L € R se tiene f'(a) = L <= f'(a+) = f'(a—) = L. [ ]

Las derivadas laterales permiten precisar atin mas la relacién con la continuidad, como muestra
el siguiente resultado.

Proposicién 5.6. Si existe f'(a+), entonces lim, 1 f(x) = f(a), y si existe f’(a—), entonces
lim, . f(z) = f(a). En particular, si existen ambas derivadas laterales, aunque no coincidan,
f es continua en a. |

| Ejemplo

Problema. Sea f: R — R dada por f(z) = az? + bz + c. Probar que f es derivable
en R con derivada f/(z) = 2az + b.
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Resolucion. Para y # x consideramos el cociente incremental:

fly) = flz) _ aly® —2%) + by — x)
y—w y—w

=a(y+z)+0.

Haciendo y — = obtenemos

f'(x) = lim (a(y + =) + b) = 2az + b, VzeR.

Yy—x

Como caso particular, si a = b = 0 la funcién es constante f = ¢ y entonces f'(z) =0
para todo = € R.

\

| Ejemplo

e

Problema. Sea f: R — R dada por f(z) = |z|. Probar que f es derivable en R* y no
en 0, con derivada

1, x>0,
-1, =z <0.

r _|a]
fll@) =sgn(z) = — =" = {
Resolucién. Por el cardcter local de la derivabilidad, f es derivable en R™ ya que
flr+(x) =z, y se tiene f’(x) = 1. Andlogamente, f es derivable en R~ con f/(z) = —1.
En x = 0 calculamos las derivadas laterales:

(07 = tim o tim Tt o) = dim B g 22—

f( ) z—0t X z—0t T f( ) =0~ T z—=0~- T
Existen ambas derivadas laterales pero no coinciden, luego f no es derivable en 0
(aunque si es continua en 0).

5.2 Reglas de derivacién

Pasamos a presentar las reglas de célculo de derivadas, que a su vez nos permitirdn ampliar el
catdlogo de funciones derivables que conocemos. Empezamos naturalmente con la suma y el
producto de funciones derivables.

Proposiciéon 5.7. Sean f,g: A — R funciones derivables en un punto a € AN A’. Entonces:
(1) La funcién f + g es derivable en a, con (f + g)'(a) = f'(a) + ¢'(a).
(11) (Regla de Leibniz) La funcién fg es derivable en a, con (fg)' (a) = f'(a)g(a) + f(a)g'(a).

(111) Para A € R, la funcién \f es derivable en a con (Af)'(a) = Af'(a).

Demostraciéon

(i) Para z € A\ {a},
(f+9)@) = (F+9)a) _ flz) = fla)  g(z) —g(a)

r—a r—a r—a

)
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y pasando a limite cuando & — a se obtiene (f + g)'(a) = f'(a) + ¢'(a).
(ii) De nuevo, para x € A\ {a},

(o)) = (Fo)a) _ f@) = F(@) () 900) —ola)

r—a r—a Tr—a

Como g es continua en a, lim,_,, g(x) = g(a), y tomando limites:

i 9)@) — (F9)(a)

r—a Tr—a

= f'(a)g(a) + f(a)g'(a).

(iii) Basta aplicar (ii) al producto con g = A, usando que ¢'(a) = 0. [ |

u

Vemos ahora la regla de derivaciéon de un cociente.

Proposicién 5.8. Sean f,g : A — R dos funciones derivables en un punto a € AN A’.
Supongamos que g(a) # 0 y sea

B={zecA: g(x)#0}.
Entonces a € BN B’ y la funcién f/g: B — R es derivable en a con

N fla)g(a) — f(a)g'(a)
<g> (@) = g(a)? '

Demostracién

Como g es continua en a y g(a) # 0, por conservacion del signo tenemos un § > 0 tal
que g(z) #0en (a—d,a+ ) NA. Asi (a—d,a+J)NAC Byac BNB, loquenos
permite estudiar la diferenciabilidad en a restringiendo f/g a B, por su caracter local.

Para x € B\ {a} escribimos
(f/9)(z) = (f/9)(a) _ f(2)g(a) — fla)g(z) _ (f(z) — f(a))g(a) — f(a) (9(z) — g(a))

T—a ~ g(@)g(a)(z —a) g(x)g(a)(z — a)

Tomando limites y usando la derivabilidad de f y g en a (y que g(x) — g(a) # 0),

(
o U/9)@) = (f/9)(@) _ F(@)gla) ~ f(a)g/ (@)

r—a €T — Q g(a)z

. J

Las reglas anteriores nos permiten deducir facilmente la derivabilidad de las funciones racionales.
Empezamos probando por induccién cémo se deriva un monomio de grado k € N.

| Ejemplo

s N

Para cada k € N, la funcién fi, : R = R, fi(2) = 2¥, es derivable en R y
fi(z) = ka*t Vz € R.

Resolucion. Por induccién en k. El caso k = 1 esta hecho en un ejemplo anterior.
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Supongamos cierta la férmula para k € N y consideremos fjy1(z) = 2! = 2 - 2*. Por

la regla del producto,
fla(@) = (@) 2" + o (%) = 125 + 2 kab = (k+ 1)aF,

como queriamos.

Usando el ejemplo recién probado y la regla de derivacién de la suma, es facil adivinar que
las funciones polindémicas son derivables y como se obtienen sus funciones derivadas. Mas en
general, tenemos:

Proposicion 5.9. Sea f: A — R una funcién racional, esto es,
P(z)
flx) =

= Q@

donde Py @ son polinomios y Q(x) # 0 para todo z € A. Suponiendo A N A’ # (), la regla del
cociente garantiza que f es derivable en AN A" y

_ P(2)Q() - Pr) Q'()
Q)

Vz € A,

f'(z) Vee AnA.

Proposiciéon 5.10 (Regla de la cadena). Sean f: A - Ry g: B — R con f(A) C B. Sea
ac ANA"y b= f(a), y supongamos ademds que b € B’. Si f es derivable en a y g es derivable
en b, entonces g o f es derivable en a y

(9o f)(a)=4'(0) f'(a) = g'(f(a)) f'(a).

Demostracion

Definimos la funciéon ¢ : B — R por

9ly) —9(b)
d(y)=q vy—b v7h
g'(b) siy="0.

Como g es derivable en b, la funcién ® es continua en b. Para x € A\ {a}, tomando
y = f(x) € B, tenemos

Tr—a r—a Tr—a r—a

(go f)(@) —(go flla) _g(y) —g(b) _ B(y) y—b _ (@ o £)(x) f(@) — fla)

Como f es derivable en a, es continua en a; y como ¢ es continua en b = f(a), la
composicion @ o f es continua en a. Pasando al limite cuando x — a,

(go f)(z) = (go f)la) f(x) — f(a)

1, — (P 1/ JAT) SN / b !
xl—r>1111 T —a \_( of’—/)(a) Cﬁll}}l T —a g( )f(a)’
=2(b)=g’(b) = f'(a)

como queriamos. [ |
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Una sutileza: Exigir b = f(a) € B’ es necesario para hablar de la derivada de g en b.
Sin embargo, atin si b fuese un punto aislado de B, tiene sentido considerar (g o f)'(a).

En tal caso, sabemos que existe € > 0 tal que (b—¢e,b+¢)NB = {b}. Por la continuidad
de f en a, existe § > 0 con |z —a| < § = |f(x) — b| < e, y por tanto f(z) = b cerca de
a. Asi, go f es constante en torno a a. El caracter local de la derivabilidad nos dice
que entonces g o f es derivable en a con

(9o f)(a)=0,

sin necesidad de hipotesis adicionales sobre g. En esencia, estamos derivando una
funcién constante.

\

Proposicién 5.11 (Derivabilidad de la funcién inversa). Sea f: A — R una funcién inyectiva,
sea B = f(A) y consideremos la funcién inversa f~!: B — R. Supongamos que f es derivable
en un punto a € AN A’ y sea b = f(a). Entonces b € B" y son equivalentes:

(i) f'(a) #0y f~! es continua en b.

(ii) f~! es derivable en b.

En tal caso,

(f=() = =

Demostracion

En primer lugar, probamos que b € B’. Como a € A’ existe una sucesion {x,} C A\ {a}
con {x,} — a. Por la continuidad de f en a (derivabilidad = continuidad) se tiene
{f(zn)} — by, por inyectividad de f, f(x,) # b. Asi, hay una sucesién de puntos de
B distintos de b, que converge a b; por tanto b € B’.

(i) = (ii)| Sea {b,} € B\ {b} con {b,} — b. Queremos demostrar que se cumple
f7Hb) = f7HD) 1
bob @)
Definimos a,, = f~!(b,) € A\ {a}. La continuidad de f~' en b da {a,} — f~1(b) = a.
Como f(an) = by, y f(a) = b, obtenemos

f_l(bn)_f_l(b) _ an —a

bn_b _f(an)_f(a).
Usando la derivabilidad de f en a y que f/(a) # 0, tenemos
flan) — f(a) / an —a 1
— f a — — .
an—a ) Flan) —1l@)  7(@)
(ii) = (i).| Si f~! es derivable en b, entonces es continua en b.

Para ver que f'(a) # 0, aplicamos la regla de la cadena a f~!'o f =id4 en a:
1= (ida)'(a) = (f " o f)(a) = (f71)'(b) f'(a).
Luego f'(a) # 0y, ademas, (f~1)(b) = 1/f(a). [ ]
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| Ejemplo

s N

Dado ¢ € N\ {1}, la funcién g,(z) = ¢z es derivable en Dom(g,) \ {0} con

go(x) = vr

_q;v'

Resolucién. Como es natural, el dominio de definicién de g, depende de la paridad de
¢, que determina a su vez el dominio de f,(z) = 27 del cual g, es inversa. Para agrupar
ambos casos, ponemos

{R, si g es impar,
¢ =

[0, +00), siq es par.

En ambos casos A4 es un intervalo y la funcién f, : A; — R es estrictamente creciente,
luego f~! existe y es continua en f,(A,) = 4,.

Ademds, f; es derivable en A, con f;(x) = qr?~!. Por tanto, fo(x) # 0 cuando = # 0,
esto es, en A, \ {0}.

Se tiene fo(Aq4 \ {0}) = A, \ {0}. Tomemos pues y € A, \ {0}. Usando la regla de
derivacién de la funcién inversa:

PN N 1 _ 1 B 1 R4
o)1) = W) = 3010 = 0w~ a(gm  ay’

. J

5.3 Teorema del Valor Medio

Las siguientes definiciones son tan intuitivas que no precisan motivacién algunas:
Definicion 5.12. Sea f: A — R.

» Diremos que f tiene un mdzimo absoluto en a € A f(a) es el méximo del conjunto f(A),
esto es, si f(a) > f(x) para todo z € A.

» Diremos que f tiene un minimo absoluto en a € A si f(a) es el minimo del conjunto f(A),
esto es, f(a) < f(z) para todo x € A.

= Diremos que f tiene un extremo absoluto en a si f tiene en a un maximo absoluto o un
minimo absoluto.

Definiciéon 5.13. Para A C R, un punto a € A es interior a A si existe r > 0 tal que
(a —r,a+r) C A. Denotamos por A° al conjunto de puntos interiores de A, también llamado
el interior de A.

Definiciéon 5.14. Sea f: A — R.

» Diremos que f tiene un mdzimo relativo en a € A si existe § > 0 tal que (a —d,a+0) C A
y f(a) > f(z) para todo x € (a — d,a + ).

» f tiene un minimo relativo en a si f(a) < f(x) para todo z en dicho intervalo.
= Un extremo relativo es un méximo relativo o un minimo relativo.

En vista de la definiciéon anterior, solo hablamos de extremos relativos en puntos interiores de
A. Para ilustrar la diferencia entre extremos absolutos y relativos, consideramos el siguiente
ejemplo:
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Yy
x, 0<z<1,
flz)=R2—2, 1<z<2,
2 —4, 2<x<S3. 1
1 2 3

En vista de la grafica, no es dificil intuir que f tiene

= En x = 0, un minimo absoluto que no es relativo.

En z = 1, un maximo relativo que no es absoluto.

En z = 2, un minimo absoluto y relativo.

En z = 3, un maximo absoluto que no es relativo.

Intuitivamente, vemos claro que si f tiene un extremo relativo en un punto en el que puede
definirse la recta tangente a su grafica, esta serd horizontal. Esta idea nos lleva a la siguiente
condicién necesaria para que una funcién derivable tenga un extremo relativo.

Proposicion 5.15. Si f : A — R tiene un extremo relativo en a € A y f es derivable en a,
entonces f'(a) = 0.

Demostraciéon

Supongamos que f tiene un méaximo relativo en a. Entonces existe § > 0 tal que
(a—d,a+6) C Ay f(a) > f(x) para todo z de ese intervalo. De aqui,

a—5<x<a:>M20, a<x<a+5:>M
r—a T—a

<0.

De la primera inecuacién deducimos que f’'(a—) > 0 y de la segunda que f’(a+) < 0.
Si f es derivable en a, f'(a+) = f'(a—) = f'(a), lo que implica que f’(a) = 0.

Si f tiene en ¢ un minimo relativo, aplicamos lo anterior a — f, que tiene un maximo
relativo en a. Entonces 0 = (—f)'(a) = —f’(a), es decir, f'(a) = 0. [ |

Ejercicio: Dar un ejemplo de una funcién no constante que tenga un maximo relativo
en todos sus puntos.

\ J

Aunque el resultado anterior solo permite encontrar extremos relativos, puede usarse para
obtener una regla practica para optimizar una funcién, es decir, encontrar su maximo y minimo
absoluto, si es que los tiene. Basta pensar en qué condiciones debe cumplir un punto de extremo
absoluto para no ser detectado por la proposicién anterior.

-

Regla practica: Si f : A — R tiene un extremo absoluto en a € A, entonces
necesariamente a esta en una de las siguientes situaciones:

(1) a ¢ A%

(2) a € A°y f no es derivable en q;
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(3) a€ A%y f'(a) = 0.

En la préctica, el conjunto de puntos que cumplen una de las tres condiciones anteriores suele
ser finito, lo que nos permite encontrar los extremos absolutos de f simplemente comparando
las imagenes de dichos puntos.

| Ejemplo

e

Problema. Calcular los extremos absolutos y relativos de f(x) = 22 — 2 x| en el
intervalo [—2, 2].
Resolucién. Como f es una funcién continua, f([—2,2]) es un intervalo cerrado y

acotado por el teorema de Weierstrass. Por lo tanto f alcanza su maximo y su minimo
en [—2,2].

Para encontrar los extremos absolutos, construimos nuestro conjunto de candidatos
usando la regla anterior:

@ Puntos no interiores: ©t = -2y x = 2.

@ Puntos interiores donde f no es derivable.

Para o # 0, f es derivable porque z? y |z| lo son. En # = 0 vemos facilmente que
f'(04+) =1y f'(0—) = —1, por lo que f no es derivable en 0. Afiadimos este punto a
nuestro conjunto de sospechosos.

@ Puntos interiores que cumplan f'(x) = 0.

Para x # 0, tenemos que

x
f(z)=0 <= 2x-2 u:O — 2’ =|z|.
x
Si > 0, la ecuacién anterior es equivalente a 2 = x, que tiene como tnica solucién

2 = 1. En cambio, si < 0, se tiene 22 = —z y por tanto x = —1.

Candidatos a extremos absolutos: {—2, —1,0, 1,2}. Comparamos las imégenes, teniendo
en cuenta que f es una funcién par (f(x) = f(—=x)):

f(=2)=F2)=0, [f(-1)=f(1)=-1, f(0)=0.

Por tanto, f tiene minimos absolutos y relativos en 1 y —1, un maximo absoluto y
relativo en 0 y maximos absolutos en —2 y 2.

. 4

Con el objetivo de abreviar los enunciados que apareceran a partir de ahora, introducimos una
notacién que recoja las distintas hipotesis de continuidad y derivabilidad que usaremos.

Sea A C Ry f:A— R. Denotamos por C(A) al subconjunto de F(A) de las funciones
continuas en A, y D(A) al subconjunto de este formado por las funciones derivables en A,
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teniéndose

D(A) Cc C(A) C F(A).

Cuando A° # (), una hip6tesis que aparecerd a menudo serd que f sea derivable en A°. Abusando
de la notacién, esto lo escribiremos como f € D(A°), entendiendo que f|4o es una funcién
derivable en A°. Por tanto, si pedimos que una funcién f : A — R sea continua en todo A pero
derivable solo en los puntos de A°, escribiremos simplemente f € C(A) N D(A°).

Uno podria preguntarse por la posibilidad de trabajar con la hipétesis més cémoda f € Dla, b],
pero entonces estarfamos descartando funciones tan elementales como x — /1 — 22 para
x € [—1,1], que no son derivables en los extremos de los intervalos donde estdn definidas y atn
asi satisfacen todas las propiedades que listaremos a continuacién.

Comenzamos sacando partido a la condicién f’(a) = 0 que se tiene en los extremos relativos a
donde f es derivable, poniéndonos en una situaciéon en la que podamos garantizar la existencia
de estos.

Teorema 5.16 (Teorema de Rolle). Sean a,b € R cona <by f € Cla,b] N D(a,b) tales que
f(a) = f(b). Entonces existe ¢ € (a,b) tal que f'(c) = 0.

Demostracién

Por ser f continua en [a,b], el teorema de Weierstrass garantiza que f([a,b]) tiene
minimo y méximo, esto es, existen m, M € [a,b] con f(m) = min f([a,b]) y f(M) =
méx f (o, b]).

Si m € (a,b), entonces serdn ademds un minimo relativo, y por tanto f'(m) = 0,
proporciondndonos el ¢ que buscdbamos, y lo mismo ocurre si M € (a,b).

Si esto no ocurre, es porque m y M son los extremos del intervalo [a, b]. Pero entonces,
dado que f(a) = f(b), se tiene que min f([a,b]) = max f([a,b]), luego f es constante
en [a,b]. Por tanto f’(x) =0 en todo (a,b). [ |

N J

A continuacién enunciamos y demostramos uno de los teoremas mas importantes del calculo
diferencial.

Teorema 5.17 (Teorema del valor medio). Sean a,b € R cona < by f € Cla,b] N D(a,b).
Entonces existe ¢ € (a,b) tal que

Demostracion

La intuicién geométrica de esta demostracion es clara: entre los puntos (a, f(a)) y
(b, f(b)) existe un (¢, f(c)) de forma que la recta tangente a Gr f en (¢, f(c)) es paralela
a la recta secante que une (a, f(a)) con (b, f(b)). Esto ademés nos da una pista de
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cémo demostrar el resultado: restando a f dicha recta secante

f(0) — f(a)

b—a

r(@) = f(a) +

(m—a),

y aplicando el teorema de Rolle a la funcién resultante.

Consideramos pues la funcién ¢ : [a,b] — R definida por

g(x) = f(z) —r(x)  (z €la,b]).

Claramente g € Cla,b] N D(a,b) y

@) =) -0 aea)

—a

Ademas, g(a) = g(b) = 0, lo que nos permite aplicar el teorema de Rolle para obtener
un ¢ € (a,b) con ¢'(¢) = 0. Por tanto f(b) — f(a) = (b—a) f'(c¢), como querfamos. W

Nota: Al igual que sucedia con el teorema de Bolzano y el del valor intermedio, el
teorema del valor medio implica a Rolle como caso particular tomando f(b) = f(a) v,
a su vez, el teorema de Rolle permite demostrar el teorema del valor medio.

Ejercicio: Sea f € D[0,1] verificando que f(0) = 0y |f'(z)] < |f(z)| para todo
x € [0,1]. Probar que f(x) = 0 para todo = € [0, 1].

Pasamos a comentar algunas consecuencias importantes del teorema del valor medio. Empezamos
estudiando cémo el signo de f’ determina la monotonia de f, lo que a su vez nos permite

detectar extremos relativos.

Proposicién 5.18. (De la derivabilidad a la monotonia) Sea I un intervalo no trivial y

f € C(I)n D(I°). Entonces

f es creciente en [ <  f'(z)>0 Vxel°,
f es decreciente en I < f'(z) <0 Vzel°

Demostracion

Demostramos solo el caso en que f es creciente, pues el segundo se puede obtener
aplicando el anterior a —f.

Sea x € I°.

= Si h >0, como f es creciente,
. s e 1s flz+h)—f(z
» Si h <0, entonces f(z+ h) < f(z) y, al dividir por h <0, % > 0.

Tomando h — 0, se obtiene f'(x) > 0.

f(x+h)—f(x
(@ih) 1) 5 g
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Tomemos y < z en I. Por el TVM aplicado en [y, z],

f(z) = fly) = f'(c) (z —y) paraalgin c € (y,2) C I°.

Como f'(¢) >0y z—1y >0, se sigue f(2) > f(y). [ |

. J

Proposicién 5.19. De la derivabilidad a la monotonia estricta] Sea I un intervalo no trivial y
feC(I)nD(I°). Si f'(x) # 0 para todo x € I°, entonces [ es estrictamente mondtona en I.

En tal caso, si f es estrictamente creciente, entonces f’(x) > 0 para todo x € I°, y f'(x) <0 en
I° si f es estrictamente decreciente.

Demostracion

Veamos que si f/(x) # 0 en I°, entonces f es inyectiva, lo que sumado a la continuidad
de f nos dard la monotonia estricta.

Tomamos = # y en I. Por el teorema del valor medio existe ¢ € (x,y) C I° con

fly) = f(z) = fc) (y — ).
Si f(y) = f(x), se tendria f’(c) = 0, contradiccién. Luego f es inyectiva en I.

Si f es estrictamente creciente, por la Proposicién 5.18 se tiene f/(x) > 0 en I°; como
nunca se anula, en realidad f’(x) > 0 en I°. Andlogamente, si f es estrictamente
decreciente, entonces f’(x) < 0 en I°. |

Nota: Obsérvese que al hablar de monotonia estricta perdemos la afirmacién reciproca;
que una funcién f sea derivable en un intervalo y estrictamente mondtona no implica
que f’ no se anule en dicho intervalo.

Encontramos un contraejemplo sencillo en la funcién f(z) = 23 definida para todo
x € R, que es estrictamente creciente en R pero f/(0) = 0.

* Ejercicio: Sea I un intervalo no trivial, a € I°y f € C(I) N D(I°\ {a}) tal que
f'(xz) > 0 para todo = € I°\ {a}. Probar que I es estrictamente creciente en I.

Importante: Notese que este resultado es falso en general si prescindimos de la

hipétesis de que f es continua en a. No es dificil dar un contraejemplo: f(z) = —2

paraz # 0y f(0)=0. ‘
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Tenemos f'(x) = ?12 > 0 para todo x # 0, lo que nos dice que f es estrictamente

creciente en (—o0,0) y en (0, 400), pero no podemos concluir que f sea estrictamente
creciente en R.

. 4

Si f/ es idénticamente nula, entonces f es a la vez creciente y decreciente en I, lo que implica
que es constante por el teorema del valor intermedio. Por supuesto, el reciproco es trivialmente
cierto.

Proposicién 5.20. Sea I un intervalo no trivial y f € C'(I) N D(I°). Entonces f es constante
si, y solo si, f/(x) = 0. [ ]

e N

Nota: Este corolario resalta la importancia de que las funciones con las que trabajamos
estén definidas en un intervalo de R. Por ejemplo, la funcién sgn : R* — R verifica
sgn’(xz) = 0 para todo x € R*, pero f no es constante en R* (aunque, a poco que se
piense, si lo serd en cada intervalo contenido en R*). Otro contraejemplo importante es
la funcién parte entera.

\ J

Proposicién 5.21. Sea J = (a —d,a+0) cona € R, 0 >0, y sea f:J — R continua en J y
derivable en J \ {a}. Si

f(x)>0 Vexe(a—6,a) y f(r)<0 Vze(a,a+d),

entonces f tiene un mdzimo absoluto en a. (Con las desigualdades invertidas se obtiene un
minimo absoluto en a.)

Demostracién

Por la Proposicién 5.18, f es creciente en (a — d,a) y decreciente en (a,a + 0). Por
tanto

f(z) < f(a) para todo = € (a — §,a) porque f es creciente, y

f(z) < f(a) para todo = € (a,a + ¢), por ser decreciente.

Por tanto, f(z) < f(a) para todo = € J, lo que nos permite concluir que f(a) es el
méximo de f en J. n
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| Ejemplo

e

o
1422
Resolucién. Como f € D(R), y R® = R, los extremos relativos satisfacen todos la
ecuacion f’'(z) = 0. Usando las reglas de derivacién, vemos inmediatamente que:

Problema. Estudiar los extremos relativos de f(z) en R.

1— 22

f/(x) = m

De f’(x) = 0 se obtiene = +1 como tnicos puntos criticos. Ademés, se tiene f'(z) > 0
para xz € [-1,1] y f'(z) <0 cuando |z| > 1. Usando la Proposicién 5.21 en a = -1y
a =1 con § =2 concluimos que f tiene un minimo relativo en x = —1 y un maximo
relativo en x = 1.

Y max. rel.
L

1 ‘

min. rel.

N

| Ejemplo

>

Resolucidn. Sea g : R — R dada por g(z) = x — arctan x. Claramente, el ntimero de
soluciones de la ecuacion anterior coincide con el niimero de valores x satisfaciendo

g(x) = 0.

En primer lugar, probaremos que g es inyectiva, lo que nos permitira concluir que,
como mucho g tiene un cero. Comprobar esta propiedad mediante la definiciéon es una
ardua tarea, pero podemos aprovechar que g es derivable para obtener la inyectividad
como consecuencia de su monotonia estricta.

Sabemos que g es derivable por ser suma de funciones derivables, y se tiene

1 2
g'(x):1—1+x2:1j_x220 Vx € R, Jd@)=0 < z=0.

De ¢'(x) > 0 en (—00,0) y en (0,+00), concluimos que g es estrictamente creciente
en R~ y en RT. Como g es continua en 0, podemos concluir que g es estrictamente
creciente en todo R (véase el ejercicio ).

En efecto:

Sean z,y € R con x < y. Nuestro objetivo es probar que f(z) < f(y). Por supuesto,
esto ya lo sabemos si 0 <z <y o x <y <0, por lo que solo debemos discutir el caso
r<0<y.

Aplicando el TVM en [z,0] y [0,y], existen ¢; € (2,0) y c2 € (0,y) tales que
9(0) —g(z) = g'(c1)(0—2) >0, g(y) — g(0) = ¢'(c2)(y — 0) > 0.

Sumando, g(y) — g(x) > 0. Por tanto g es estrictamente creciente en R y la ecuacién
g(x) = 0 tiene a lo sumo una solucién.

Problema. Calcular el nimero de soluciones de la ecuaciéon x = arctan x para x € R.
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Finalmente, observamos que ¢g(0) = 0 — arctan 0 = 0, luego = 0 es la unica solucién.

Alternativamente, como
—§ <arctanz < § Vr €R,

se tiene g(5) > 0y g(—%) <0, y por el teorema de Bolzano hay un cero en (-7,
que por inyectividad de g debe ser tunico.

B
~

Ejercicio: Demostrar que existe una tnica funcién f : R — R tal que
2f(x)® = 3f(x)? +6f(x) =2 Vo cR.

Probar que f es derivable en R y calcular f(0).

\ J

Como tltima consecuencia del teorema del valor medio, veamos que las funciones derivadas
cumplen la propiedad del valor intermedio, esto es, transforman intervalos en intervalos. Ademas,
obtendremos una importante regla de calculo de derivadas en un punto a través de limites de la
funcién derivada.

Aunque estas propiedades nos recuerden a las de las funciones continuas, nétese que en ningan
momento asumiremos que [’ es continua.

Teorema 5.22 (Teorema de Darboux). Sea I un intervalo no trivial y sea f : I — R una
funcién derivable en I. Entonces el conjunto f'(I) = { f’(z) : x € I } es un intervalo. Por tanto,
f! tiene la propiedad del valor intermedio.

Demostracién

Razonando por reduccién al absurdo, supongamos que existen a,b € I, y A € R tales
que f'(a) < A < f/(b) pero A ¢ f/(I).

Construimos la funcién ¢ : I — R definida por g(z) = f(z) — Az para todo = € I. Esta
funcién es derivable en I con ¢'(z) = f/(x) — X # 0 para todo z € I.

Por tanto, g es estrictamente monétona, y ocurrird entonces que, o bien ¢'(x) > 0 para
todo z € I si g es creciente, o bien ¢'(x) < 0 para todo x € I si g es decreciente.

En ambos casos tenemos una contradiccion, ya que ¢'(a) = f'(a) — A < 0, mientras

que ¢'(b) = f'(b) = A > 0.

Para ver que f’ tiene la propiedad del valor intermedio, tomamos un intervalo J C I y
aplicamos este resultado a f’|;. |

. J

Cuando una funcién f definida en un intervalo I puede escribirse como ¢’ para alguna otra
funcién g € D(I), decimos que g es una primitiva de f, y por tanto que f admite una primitiva
en I.

En estos términos, el teorema de Darboux puede leerse como sigue: si f : I — R admite una
primitiva, entonces f tiene la propiedad del valor intermedio.
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Esta lectura nos permite concluir inmediatamente que funciones como la parte entera no admiten
una primitiva en R, puesto que no verifican la propiedad del valor intermedio.

Proposicion 5.23. Sea I un intervalo no trivial y f : I — R una funcién continua. Dado a € I,
supongamos que f es derivable en I\ {a}.

(i) Si f’ tiene limite en a, entonces f es derivable en a con f'(a) = lim,_,, f'(z).
(ii) Si f’ diverge a 00 en a, entonces f no es derivable en a.
(iii) Supongamos que a € I°.
= Si f tiene limite por la izquierda en a, entonces f es derivable por la izquierda en a
con f'(a—) = lim,_,,~ f'(z).
» Si f/ tiene limite por la derecha en a, entonces f'(a+) = lim,_,,+ f'(x).

Por tanto, si f’ tiene limite por la izquierda y por la derecha en a, pero dichos limites no
son iguales, entonces f no es derivable en a.

Finalmente, si f es derivable en I, entonces f’ no tiene discontinuidades evitables ni de salto en
ningtn punto de I.

Demostracion

Sea {x,} C I'\ {a} con {z,} — a. Para cada n, definimos

I - [Xn,a] iz, <a,

" [a,z,] siz, > a.
Entonces I, C I 'y I7 C I\ {a}, luego f es continua en I, y derivable en I;.
Para cada n € N, por el teorema del valor medio existe ¢, € I, tal que

f(xn) — f(a)

= f'(cn), min{a,z,} < ¢, < max{a,x,}, ¢, — a.
n

(i) Si L =1lim,_,, f'(x), entonces f'(c,) — L y la identidad anterior da la derivabili-
dad de f en a con f'(a) = L.

(ii) Si{f'(cn)} diverge, de la misma identidad se deduce que f no es derivable en a.

(iii) Si a € J° y existe L_ = lim,_,,- f'(x), tomando z,, T a obtenemos ¢, T a 'y
f'(en) — L_, luego existe f'(a—) = L_. De forma andloga para la derecha. Si los
limites laterales existen pero no coinciden, las derivadas laterales de f en a no
coinciden y f no es derivable en a.

Por dltimo, si f es derivable en I, f’ no puede tener discontinuidades evitables (contra-
dirfan (i)) ni de salto (contradirfan (iii)). [

Ejercicio. Sea f una funcién derivable en (0, 400). Probar que si f y f’ tienen limite
en +oo, entonces lim,_, 1 f'(z) = 0. {Es cierto el reciproco? ;Es cierto el resultado si
prescindimos de la hipétesis de que f’ tenga limite en +o00?
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5.4 Funciones convexas

La nocién de funcién convexa es muy facil de comprender geométricamente: si I es un intervalo
no trivial, una funcién f : I — R serd convexa cuando, dados dos puntos cualesquiera a < b en
I, la grafica de f|f,p queda siempre por debajo del segmento que une (a, f(a)) y (b, f(b))-

Y

_ / r

Sabemos que para a < b en I, la recta secante a la grafica de f que pasa por (a, f(a)) v (b, f())
tiene ecuacion
f(®) — f(a)

T(x)zf(a)Jrﬁ(f*a)

Por tanto f serd convexa cuando, para cualesquiera a,b € I con a < b, se tenga que

IO-1@ (W o

b—a
0 equivalentemente,
b—=x Tr—a
fa) < TS fla) + T2 f®) Vo o (51)

Nétese que los coeficientes que acompanan a f(a) y f(b) en la férmula anterior se encuentran
en [0, 1], y ademds su suma es constantemente igual a 1. Esto nos motiva a escribir
r—a b—=zx

—te[0,1], —— =1-tel0,1].
b_a 6[7]7 b—a E[?]

por lo que queda z = (1 —t)a +tb € [a,b] y (5.1) nos dice que
f(A—=t)a+1tb) < (1—t)f(a)+tf(b)  Vtel0,1]

Hemos llegado asi a la definicién cémoda de funcién convexa que buscabamos.

Definicién 5.24. Si I es un intervalo no trivial, se dice que una funcién f : I — R es conveza
cuando verifica:

F(A=t)z+ty) < (1 —t)f(z) +tf(y) Vo,y € I, Vte|0,1]

Por otro lado, decimos que f es concava cuando —f es convexa, es decir, cuando se tiene la
desigualdad opuesta (>).

Nétese que en realidad es suficiente con comprobar la definicién para t € (0,1), pues la
desigualdad anterior es trivialmente cierta para t = 0 y t = 1. De hecho, se da la igualdad en
esos puntos.

Como ejemplo, la funcién valor absoluto es convexa, pues evidentemente, por la desigualdad

triangular
1=tz +ty| <A —1t)|z|+¢tly] Vz,yeR, Vtel0,1].
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En general, no es sencillo verificar la definicién de convexidad, ni siquiera para funciones muy
elementales. Lo habitual es usar alguna de las caracterizaciones que vamos a ver a continuacion,
y reservar la definicién para obtener desigualdades nada triviales para funciones que ya sabemos
que son convexas.

Lema 5.25 (de las tres secantes). Sea I un intervalo no trivial y f : I — R una funcién convexa.
Entonces, para cualesquiera x1, 22,23 € I, con z1 < x2 < x3, se tiene:

f(x2) — f(z1) < f(z3) — f(x1) f(z3) — f(x2)

= < .
Ty — T T3 — 1 T3 — T2

mi3

4! T2

mi2
miz2 < mi3 < Mog

Demostracion

Esta demostracion no se vio en clase.

Empezamos aplicando la definicién de convexidad con con a = x1, £ = 22 y b = x3

para obtener

T3 — T2 T2 — 2y

f(x2) <

Ahora restamos f(z1) en ambos miembros:

f(x1) + f(z3).

Ir3 — I1 I3 — 1

flo) + fles) = (2 —zy) TE) = I@1),

r3 — I T3 — I T3 — I

T — X2 T2 — X1

flx2) = f(z1) <
y al dividir por 2 — x1 > 0 tenemos la primera desigualdad:

f(z2) — f(x1) < f(x3) — f(l’l)'

To — 1 - xr3 —xl

Para la segunda, cambiamos de signo ambos miembros de (5.4), con lo que la desigualdad
se invierte, y sumamos en ambos f(z3), obteniendo

T2 — I3 T3 — X2 f(x3) — f(z1)

— > = = - - — — A S S

f(z3) = fz2) = p—— f(@1) + p— flxg) = (w3 — x2) P
con lo que basta dividir por x5 — z2 > 0. |

Proposicién 5.26. Sea I un intervalo no trivial y f : I — R una funcién convexa. Entonces,
para cada a € [ la funcién f, : I\ {a} — R, dada por

)~ 1@ 1@

tod el ,
P para todo x \ {a}

es creciente.
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Demostracién

Seana € I 'y x,y € I\ {a} con = < y. Para probar que f,(z) < f,(y), distinguimos los
tres casos posibles, segtin cémo estén ordenados los puntos.

= Sia <z <y, usamos la primera desigualdad del lema de las tres tangentes con
x1 = a, r9 = x, x3 =y, obteniendo directamente que f,(x) < fo(y).

= Si z < y < a, usamos la segunda desigualdad con z1 = z, x9 = y, 3 = a,

obteniendo la misma conclusién.

= Finalmente, si z < a < y, usamos la desigualdad entre el primer y tltimo miembro
con r; = x, x3 = a, x3 =y, obteniendo de nuevo f,(x) < fo(y).
[ |

N J

Teorema 5.27. Sea I un intervalo no trivial y f: I — R una funcién convexa. Entonces f es
derivable por la izquierda y por la derecha, y por tanto es continua, en todo punto a € I°. De
hecho, se tiene

flla=) = sup{ fu(z):z€l, z<a}, fla+) = if{fo(z):x€l, z>a}.

Demostracion

La demostracién solo necesita del hecho que f, es una funcién creciente.

Como a € I°, podemos tomar b € I con b > a. Como f, es una funcién creciente, se
tiene entonces fy(x) < fu(b) para todo z < a.

Por tanto, el conjunto A = {f,(z) : © € I, < a} estd mayorado y podemos considerar
Sq = sup A.

Nuestra intencién ahora es probar que s, = f'(a™), es decir, que

Tomamos para ello € > 0 y usamos la definicién de supremo, que nos garantiza que existe
xg € A (esto es, xg € I con zy < a) tal que f,(zo) > sq —e. Tomando § = a — xg > 0,
para z € (a — J,a) se tiene

Sa_5<fa(x0) < fa(x) < 8 < Sq t 6,

como se queria. El cdlculo de la derivada por la derecha es anélogo. |

N J

Como ya se comentd, la existencia de derivadas laterales en todo punto de I° no nos asegura
que una funcién convexa sea derivable en I°, ya que estas podrian no coincidir. Por ejemplo, la
funcién valor absoluto es convexa pero no es derivable en 0.

Tampoco podemos asegurar que una funcién convexa sea continua en los extremos de un
intervalo, si los hay. Por ejemplo, tomando f(z) = 0 para todo z € (0,1) y f(0) = f(1) =1,
obtenemos una funcién convexa f : [0,1] — R que no es continua en 0 ni en 1.

Proposicién 5.28. Sea I un intervalo no trivial y f € D'(I). Las siguientes afirmaciones son
equivalentes:
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(i) f es convexa.
(ii) f’ es creciente.

(iii) Para cualesquiera a,z € I se tiene que f(x) > f(a) + f'(a) (z — a).

Demostracion

(i) = (ii)| Dados a,b € I con a < b, queremos probar que f’'(a) < f'(b). Para ello

basta tomar x € (a,b) y usar la proposicién anterior.

7@ =@ 2 1@ L h@ L o)L a2 re) = 1),
donde hemos usado que f, es una funcién creciente en (1), las expresiones
f'(b—=) = sup{ fo(z) 2z €I, x <a}l, fa+) = Wf{fo(z):z €1, z>a},
en (2) y, en (3), la observacion elemental de que

fy) = fl@)  flx) - fly)
fy(x) = PR — = fz(y).

(ii) = (iii)| Para a,x € I con a # z, el teorema del valor medio nos da un ¢

estrictamente entre a y x de forma que

fx) = f(a) + f'(c) (z — a).
Por tanto, bastard ver que f’(c) (z —a) > f'(a) (z — a).

» Sia<c<uz, alser f' creciente, tendremos f'(¢) > f’(a), y basta multiplicar
ambos miembros por x — a > 0.

» Si x < ¢ < a, entonces f'(¢) < f'(a), pero esta desigualdad se invierte al
multiplicar ambos miembros por x — a < 0.

(iii) = (i)| Sean z,y € I y t € [0,1]. En este caso, tenemos que probar que

f(A =tz +ty) < (1 —t)f(z) +1f(y).
Para ello, tomamos a = (1 — t)x + ty € I y aplicamos dos veces (iii), obteniendo:
1 =t)f(2) +tf(y) = A =t)(f(a) + f(a)(z —a)) + t(f(a) + f'(a)(y — a))
= fla) + f(a) (A = t)(z —a) + t(y — a))

y basta observar que
Ql-t)z—a)+tly—a)=((1—-t)z+ty) —(1—t)a—ta=a— (1 —t)a—ta=0.
[ |
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Recordamos que, para una funcién derivable en un intervalo, el signo de su derivada caracteriza
su monotonia. Por tanto, si f’ es derivable, tenemos:

Proposicién 5.29. Sea I un intervalo no trivial y f € D(I) tal que f' € D(I°). Entonces f es
convexa si, y sblo si, f”(x) > 0 para todo z € I°. [ |

5.5 Las reglas de L’Hépital

En esta seccion estudiaremos un método préactico para resolver indeterminaciones de los tipos
[0/0] o [00/x¢], conocido como la regla (o reglas) de L’Hépital.

La llamada regla de L’Hépital es un buen ejemplo de la famosa ley de Stigler de la eponimia,
que dice, en esencia, que ningin descubrimiento cientifico lleva el nombre de su descubridor
original. De forma irénica, la propia ley lleva el nombre del estadistico S. Stigler, pero suele
atribuirse al socidlogo estadounidense R. K. Merton.

Guillaume Francois Antoine, marqués de L’Hopital, fue un aristécrata y matematico francés,
conocido por ser el autor del primer manual de célculo diferencial, Analyse des infiniment petits
pour lintelligence des lignes courbes, publicado en 1696. En esta obra aparece una regla para
calcular ciertos limites asociados a formas indeterminadas como [0/0], que hoy conocemos como
regla de L’Hopital, pero cuyo descubrimiento se debe casi con toda seguridad a quien fue su
maestro, Johann Bernoulli.

L’Hopital se convirtié en alumno de Bernoulli en Paris, donde este tltimo habia sido invitado a
impartir un curso de calculo. Bernoulli era un matemaético brillante pero con pocos recursos
econdémicos y sin una posicién estable, y fruto de su relaciéon con L’Hépital, en 1694 firmaron
un acuerdo por el cual L’Hopital le pagaba un salario anual de 300 francos a cambio de recibir
por carta sus resultados mas recientes y poder utilizarlos libremente en sus propios escritos.

La correspondencia conservada sugiere que muchos de los resultados del libro, incluida la regla de
calculo de indeterminaciones mediante derivadas sucesivas, proceden efectivamente de Bernoulli,
mientras que el mérito de L’Hdépital reside sobre todo en haberlos organizado y difundido en
forma de tratado claro y sistematico.

Tras la muerte de L’Hopital, Bernoulli empezd a reclamar con fuerza el mérito de muchos
resultados del libro, incluida la regla. En una carta de 1707 a Varignon llega a afirmar que
L’Hopital «no tuvo otra parte en este libro que traducir al francés el material que yo le
proporcioné, en su mayor parte en latiny. Durante siglos, esto alimenté la idea de que L’Ho6pital
habia sido poco més que un plagiario que se aproveché de los descubrimientos de un matemaético
en una posicion inferior a la suya.

Cuando a principios del siglo XX se redescubre y publica el contrato original, los historiadores
matizan mucho este juicio: L’Hopital no fue exactamente un ladrén de ideas, sino alguien que
pagé por tener derecho a usarlas y que, ademads, organizé, pulié y escribié un manual muy claro
y didactico, algo que tampoco es trivial desde el punto de vista matematico e histérico. En
la introduccién de su libro agradece de forma explicita la ayuda prestada por Bernoulli, y en
ningiin momento afirma ser el descubridor de los resultados que presenta.

Comenzamos con un resultado que abre el camino a relacionar los cocientes f/gy f'/g’, y que
puede entenderse como una versién generalizada del teorema de valor medio, descubierta por
Cauchy.
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Teorema 5.30 (Teorema del valor medio generalizado). Sean a,b € R cona < by f,g €
Cla,b] N D(a,b). Entonces, existe ¢ € (a,b) verificando que:

(f(0) = f(a)) g'(c) = (9(b) —g(a)) f'(c)

Interpretacién geométrica. Si representamos la curva paramétrica x — (g(x), f(z))
en el plano R?, los puntos P = (g(a), f(a)) y Q = (g9(b), f(b)) definen una cuerda. El
teorema asegura que existe ¢ € (a, b) tal que la recta tangente a la curva en (g(c), f(c))
es paralela a la cuerda PQ); en efecto,

x +— (sinx, cosx)
cuerd

Demostracion

Consideramos la funcién h : [a,b] — R dada por

L f(z) g(x)
hz) =11 fla) g(a)| = (F(b)=f(a)) g(x) = (9(b)=g(a)) f(z) + f(a) g(b) = [(b) g(a)
L f(b) g(b)

Es claro que h € Cla,b] N D(a,b) con
W(x) = (f(0) = f(a)g'(z) — (9(b) —g(a)) f'(x)  Va € (a,b)

También se tiene h(a) = h(b) = 0, y podemos usar el teorema de Rolle para encontrar
un ¢ € (a,b) tal que h/(c) = 0, que es precisamente la igualdad buscada. [ |

Observacion. El teorema del valor medio de Cauchy es, efectivamente, una genera-
cilizacion del teorema del valor medio que ya hemos visto. Por un lado, es claro que
podemos recuperar el segundo a partir del primero sin mas que tomar g(z) = x.

Ademaés, la versién de Cauchy nos da més informacion: si apliciramos el TVM por
separado a f y a g, obtendriamos puntos ¢, d € (a,b) tales que

f@) = fla)=f'(c)(b—a),  g(b) —gla) =g'(d) (b—a),
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y s6lo concluiriamos

lo cual no garantiza la conclusiéon del teorema generalizado porque, en general, no
podemos asegurar ¢ = d.

\ J

Respetando su aparicion histérica, presentamos primero la regla para trabajar con indetermina-
ciones del tipo [0/0].

Teorema 5.31. Sea I un intervalo no trivial, a € I'y f,g: I \ {a} — R funciones verificando:
(a) fy g son derivables en I\ {a}

(b) ¢'(z) # 0 para todo z € I\ {a}

(¢) lim f(z) = lim g(z) = 0.

Entonces se tiene que g(x) # 0 para todo x € I\ {a}, con lo que las funciones f/g y f’/g" estan
definidas en I\ {a}. Ademas, se verifica que:

) @)

(i) %1_% @) LeR = %_m o(2) L.

) @)
(ii) 70 — 40 (r—a) = o) — + (r — a)
@) @)
(iii) 7 (@) - -0 (r—a) = o(2) — (r — a)

Ademaés, si I no estd mayorado y tomamos a = 400, entonces existe un M > 0 tal que g(z) # 0
para todo = € I con x > M, y las implicaciones (i)-(ii)-(iii) siguen siendo validas. Lo mismo
ocurre si I no estd minorado y tomamos a = —oo.

Demostracion

Empezamos con una observacion sencilla: la hipdtesis (¢) permite extender las funciones
fy g en a sin més que poner f(a) = g(a) = 0, obteniendo funciones continuas en
1. Abusando de la notacién, seguiremos llamando f y ¢ a dichas extensiones, ya que
demostrar el teorema para las extensiones es equivalente a hacerlo para las f y g
originales. Asi pues, podemos suponer que f,g € C(I) con f(a) = g(a) = 0.

Para x € I\ {a} llamamos J, al intervalo entre a y x, cualquiera que sea su orden, es
decir, J, = [min{a, z}, max{a,x}|. Por supuesto, f y g son continuas en J,, ya que
Jg C 1,y derivables en Jg, pues Jo C I\ {a}.

Para comprobar la primera afirmacién del enunciado, esto es, que g(x) # 0, aplicamos
a g el teorema del valor medio, obteniendo d, € J; tal que

9'(ds) (x —a) = g(z) —g(a) = g(z)
pero = # a y sabemos que ¢'(d,;) # 0, luego g(z) # 0.

Por otra parte, aplicamos a f y g el teorema del valor medio generalizado, obteniendo
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¢y € Jy tal que
(f(x) = fa)) g'(cz) = (g9(x) — g(a)) f'(ca)

con lo cual tenemos

flz) _ fle)
g

0<|ecz —al <|x—al y — =

() g(ce)

Prueba de (i).| Dado e > 0, existe § > 0 tal que

f'y)
9'(y)
Para x € I con 0 < |z — a| < §, al aplicar (2) tendremos 0 < |c, — a| < §, lo que nos
permite usar (3) con y = ¢, para concluir que

Fa) (e

9(56)_‘ 9'(cz)

yel, 0<|ly—a|<d =

—L‘ <e. (3)

—L’<€.

Prueba de (ii).| Dado K € R, existe § > 0 tal que

f'(y)
q'(y)

Para 2 € I con 0 < |z — a|] < §, aplicando (2) y (3') concluimos que

@) fle)

g(@)  ¢(cs)

yel, 0<|ly—al<i =

> K. (3"

Prueba de (iii).| Basta aplicar (ii), cambiando f por —f.

Terminamos la prueba discutiendo el caso a = 400 con [ no mayorado. La hipdtesis
(b) nos dice que g es estrictamente mondtona, luego g(x) = 0 puede ocurrir a lo sumo
una vez, garantizando la existencia del M del enunciado.

tomamos I = [0, <) v definimos f.9:1\ {0} = R mediante

for=7(3). a0=9(3).

La regla de la cadena nos da la derivabilidad de f y g en I\ {0} con

A —1 1 —1 1
’ T W o
f (.%') - xQ f <37) ’ g (JJ) .’172 g (IL’) )
siendo ambas distintas de 0 para todo x € f\ {0}. La hipdtesis (c) nos da que fya

tienen limite O por la derecha en 0, y usando la regla de ’'Hopital recién demostrada
tenemos que:

£ , 2 1 (1 ,
R B [0 R O € B )
z—+o0 g(z)  a—0t §(T) 2—0t §'(x)  a—0t =Ly (l) z—+oo ¢'(x)

entendiendo que los limites anteriores pueden ser un ntmero real o £oo. |

Ahora, usamos la equivalencia entre un limite en +oo y un limite por la derecha en 0:
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Ni que decir tiene, la regla de I’Hopital puede aplicarse al estudio de limites laterales o divergencia
lateral de una funcién en un punto, pues se trata de los limites ordinarios en dicho punto de una
conveniente restriccion de la funcién dada. En tal caso, es esta restriccién la que debe satisfacer
las hipotesis de la regla de ’'Hopital, que son méas débiles que las exigidas a la funcién original.
Dicho informalmente, basta con que se satisfagan a un lado del punto que estamos considerando.

La segunda version de la regla de 'Hépital se aplica a indeterminaciones del tipo [0o/o0].
Omitimos la demostracion de esta por su alta complejidad técnica.

Teorema 5.32. Sea I un intervalo no trivial, a € I 'y f,g: 1\ {a} — R funciones verificando:

(a) fy g son derivables en I\ {a},
(b) ¢'(x) # 0 para todo = € T\ {a},

(c) |g| diverge a +o0o en el punto a.

Entonces existe p > 0 tal que, para € I con 0 < |z — a| < p, se tiene g(x) # 0. Ademas, se
verifican las siguientes tres implicaciones:

P ) _

(i) %gr}t 7 () =LeR = iﬁa (@) L.

@) 0

(ii) () — 400 (z—a) = (@) — + (x — a).
1ii f’(x) -0 (x a M -0 (x a
W) g 77 o0 = ey 7 Eoa

Ademas, si I no estd mayorado y tomamos a = +00, entonces existe un M > 0 tal que g(x) # 0
para todo z € I con x > M, y las implicaciones (i)-(ii)-(iii) siguen siendo validas. Lo mismo
ocurre si I no estd minorado y tomamos a = —oo. |

5.6 Derivadas sucesivas

Como ya anticipamos al caracterizar las funciones convexas, para una funcién derivable f tiene
sentido preguntarse por la derivabilidad de la funcién f’, definida en el conjunto de puntos
donde f sea derivable. Nos damos cuenta enseguida que este proceso iterarse, dando lugar a
la nocién de derivadas sucesivas, y a nuevos espacios de funciones que describen el ntimero de
veces que esta operacion puede repetirse. Como es natural, para n € N, la definicién de derivada
n—ésima de f viene dada mediante una férmula recursiva.

Definiciéon 5.33. Para una funcién f: A — R, definimos
Ay ={z € AnA": f es derivable en x},

O =7 A =R, fY@)=lim M

y—=r oy —x

Sea ahora n € N y supongamos definida la funcién derivada n-ésima (™ : A,, — R. Cuando
reA,NA Yy f (") os derivable en z, decimos que f es n + 1 veces derivable en z y definimos
la (n + 1)-ésima derivada por

£ (@) = (£ (2).
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Si Apy1 = {A, N AL : f es derivable en z} # ), consideramos la funcién

(M) () — £(n)
f(nJrl) :An+1 - R, f(n+1)($) — lim / (y) / (‘T)

y— Yy—

Vx e An+1.

Por conveniencia, para cualquier funcién f : A — R escribiremos f(©) = f.

Queda claro de la definicién anterior que los conjuntos de definicién de las sucesivas derivadas,
A, pueden ser distintos entre si. Ademaés, este conjunto nunca crece; en cada interaccién estamos,
de hecho, eliminando los puntos aislados y los puntos de acumulacién en los que la derivada
anterior no vuelve a ser derivable. Por ello, en esta seccién trabajaremos preferentemente con
funciones definidas en subconjuntos A C R sin puntos aislados, esto es, A C A’. En particular,
cuando A sea un intervalo no trivial o una unién finita de intervalos, como R*.

Definicién 5.34. Para A C R no vacio y n € N, denotamos por D"(A) al conjunto de todas
las funciones f : A — R que son n veces derivables en todo punto de A.

Coherentemente, DY(A) = F(A) y D'(A) = D(A).

Observacién: Si f € D"(A) y k € Z con 0 < k < n, entonces f*) € D"*(A). En
particular, para k <n —1, f (k) es continua. Esto puede fallar cuando k = n.

Definicién 5.35. Diremos que f : A — R es de clase C" en A cuando f € D"(A) y f(™ es
continua en A. Denotamos por C"(A) al conjunto de todas las funciones de clase C™ en A.

Por convenio, C%(A) = C(A), y C1(A) el de las funciones derivables con derivada continua.

Definiciéon 5.36. Decimos que f : A — R es indefinidamente derivable o de clase C*° en A
cuando f € D™(A) para todo n € N. Denotamos por C*°(A) al conjunto de todas las funciones
de clase C*° en A. Equivalentemente,

C®(A) = ﬁ D"(A).

Se demuestra sin dificultad que f € C*°(A) si, y solo si, f € C"(A) para todo n € N.

De estas definiciones se deduce la cadena de inclusiones, valida para todo n € N,

F(A)=DA) > C°%A) > D"(A) > C™"(A) D D"H(A) > C"(A4) > C®(A). (5.2)

Al situar una funcién en alguno de estos espacios cuantificamos su regularidad: cuanto mayor n,
mas informacion tenemos sobre derivadas. Mas adelante veremos ejemplos que muestran que
todas las inclusiones anteriores son estrictas incluso en intervalos.

Enumeramos en la siguiente proposicion las propiedades mas importantes del algebra de
derivadas sucesivas. Usando los resultados andlogos para funciones continuas podemos obtener
los enunciados para funciones de clase C™ y C'°°. En todos los casos, la demostracién consiste
en una sencilla induccién que omitimos en aras de la brevedad.

Proposicién 5.37. Sean n € N, f,g € D"(A) y h € D"(B). Entonces
= fHgeD"(A)y (F+9)" =0 +4.
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fgeD"(A)y

k

(fg)) = zn: (Z) ) (B,
=0

Si g(z) # 0 para todo z € A, f/g € D"(A).
Si Ay B son tales que A C A', BC B'y f(A) C B, entonces go f € D"(A).

Si A es un intervalo no trivial y f’(z) # 0 para todo = € A, entonces f~1 € D"(f(A)).
|

Rematamos esta breve seccién dando ejemplos de que las inclusiones de (5.2) son todas estrictas.

| Ejemplo

be

Para cada n € N, la funcion f, : R — R definida por
fal@)=2" " |z|  (z€R),

verifica que f, € C"}(R) \ D"(R).
Resolucion. Razonamos por induccién sobre n.

Sin =1, tenemos f1(z) = |z|, que es continua en R pero no derivable en 0, luego

fr € C°(R)\ D(R).
Supongamos cierto el enunciado para algin n € N, esto es, f, € C" }(R) \ D"*(R).

Para = # 0,
|z

Frpa(@) = (@ |2]) = na" Mol + 2" = (n 4 D2 ol = (n 4 1) fal2).
De la féormula anterior deducimos que

Iim fr1(x) = (n+1) lim fo(z) = (n +1)f2(0) =0,

z—0

luego f41 es derivable en 0 con f) ;(0) = 0. Por tanto fu,41 € DY(R) y, como
fii1=(n+1)f, € C"YR)\ D"(R) por la hipétesis de induccién, concluimos que

Jas1 € CM(R)\ D" (R),

| Ejemplo

-~

Para cada n € N, consideremos g, h, : R — R dadas por

> lsin(1/z), z € R*, r?"sin(1/x), = € R*,
gn(x) = hn(z) =
O, €r = 0, 07 €Tr = 0

Se verifica que g, € C" }(R) \ D"(R), mientras que h,, € D"(R) \ C"(R).
Resolucion. Los céalculos para el paso inductivo en este caso son engorrosos, asi que
nos concentramos en hacer con detalle la etapa base para ambas funciones.

g1 € C°(R)\ DY(R)| Para x # 0 tenemos claramente que g; es continua y derivable
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en x, asi que centramos nuestra atencién en el punto x = 0.

Por un lado, 0 < |zsin(1/z)| < |z|, luego lim,; 0 g1(z) = 0 = ¢1(0). Asi, g1 € C(R).
Sin embargo,
xsin(l/z) —0
z—0

que no tiene limite en z = 0, por tanto g; ¢ D(R).

=sin(1/z),

h1 € DY(R)\ C'(R)| Aligual que antes, h1 es derivable en z # 0 de forma manifiesta.

En z = 0 tenemos

B (0) = Tim r?sin(1/z) — 0

toy S = liesin/a) =0,

luego h; es derivable en todo R con

W () = {imsin(l/x) — cos(1/x), i ils*,

Sin embargo, la funcién x — cos(1/x) no tiene limite en 2 = 0, luego A} no es continua
en 0. Para ver esto tltimo, podemos probar algo mucho mas fuerte: para todo y € [—1, 1]
existe {yn} C R* con {y,} — 0y tal que {cos(1/yn)} — y.

1

En efecto, la sucesién buscada es y, = arccos g

Y

0,5 1

Gréfica de h(z), que presenta una discontinuidad de sequnda especie en x = 0, las
Unicas que puede tener la derivada de una funcién derivable.

Para el paso inductivo, definimos §, y fzn de la misma forma que g, y hp, pero
cambiando la funcién seno por el coseno. Debe probarse por inducciéon que

Gny gn € C"H(R) N D™(R),  hy, hy, € D"(R) \ C"(R),
apoyandonos en las identidades:

" gnt1 = (2n+ Dhyp — Gn,
- h/n—i-l = (2n+2)gnt1 — }Alna
= Gy = (2n+ 1)iln + 9n,
Wy = (204 2)Gns1 + B

Se deja al lector interesado la comprobacién de los detalles de este razonamiento.
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5.7 Foérmula de Taylor

Es conocido el hecho de que si una funcién f : A — R es derivable en un punto a € AN A’,
entonces la recta tangente en @ es una buena aproximacion de f cerca de a en el sentido que

o (@) = (@) + @)z — )

Tr—a Tr—a

=0.

Si leemos el numerador de la identidad anterior como el error cometido al aproximar f(z) por
la tangente en a para valores cerca de a, obtenemos la informacién de que este debe ser mas
pequeno que r — a.

Si la funcién posee derivadas hasta orden n, podemos mejorar la aproximacion mediante un
polinomio de grado menor o igual que n: el polinomio de Taylor de orden n en a. Al error
de esta aproximacion lo llamaremos resto de Taylor. Su validez se cuantifica con la férmula
infinitesimal del resto, que describe la velocidad con la que dicho resto tiende a cero cuando
T —a.

Una estimacién mas precisa se obtiene con la formula de Taylor, un resultado analogo al
teorema del valor medio que involucra las derivadas sucesivas. Veremos varias aplicaciones de
esta formula; entre ellas, los desarrollos en serie de Taylor, que nos permiten escribir localmente
una funcién f como la suma de una serie.

Para averiguar la forma que tendra dicha aproximacién, pensamos en un polinomio de grado n,
que escribimos agrupado en potencias de a € R:

p(x) = ap+a1(z —a) + ag(z —a)> + -+ ap(z —a)" = zn: oz — a)*,
k=0

donde «y son los coeficientes de p.

| Ejemplo

e N

Problema. Escribir 22 + 22 + 1 como suma de potencias de = — 2.

Resolucién. Usamos convenientemente el binomio de Newton:
P42 +1=(r—-2+2)2+2(x—-2+2)+1
=(@—-27+4(x—-2)+4+2@—-2)+4+1
= (-2 +6(x—2)+9x2)

\

Como p € C*°(R), una condicién natural que podemos pedir a p(z) es que sus n primeras
derivadas coincidan con las de f(z) en el punto z = a, esto es,

¥ @) =p*(a) VE=0,1,...n.

Veamos entonces cémo deben ser los coeficientes de este polinomio p(x). Es inmediato comprobar
que ag = p(a). Ahora, si derivamos la anterior igualdad una o dos veces y evaluamos en z = a
tenemos

p(z) = z": kogzx—a)f ' = pla)=1a = a1 =fa).
k=1

pl(x) = 2”: kk—1Dapz—a) 2 = plla)=2-1ay = ay= f”(a).

k=2 2
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Es facil comprobar por induccién que

p(j)(a) =jlay = o;j=

lo que nos da la expresién

Esto motiva la siguiente definicion:

Definicién 5.38. Sea f: A — R una funcién y n € NU{0}. Si f es al menos n veces derivable
en un punto a € A, podemos considerar la funcién polinémica T,,[f, a] dada por:

que se denomina polinomio de Taylor de orden n de la funcion f en el punto a, en honor del
matematico inglés B. Taylor.

En vista de la discusion anterior, es facil deducir la siguiente propiedad del polinomio de Taylor:
Proposicion 5.39. Dada f: A — R una funcién n—veces derivable en un punto a € A, el

polinomio de Taylor T}, [f, a] es el tinico polinomio T' de orden n tal que T®)(a) = f*)(a) para
0<k<n. |

Para valorar lo buena aproximacién que es T,,[f, a] a f cerca de a, definimos el resto de Taylor,
que serd la diferencia entre ambas funciones.

Definicién 5.40. Sea f: A — R n veces derivable en a € A. Definimos el resto de Taylor de
orden n de f en a por

Rolf,al(x) = f(z) = Tulf,al(z) Vo e A

Podemos anticipar como de pequeno sera este error observando lo que ocurre para los primeros
valores de n:

Para n =0, si f es continua en a, entonces %11)% Ro[f,a](z) = ;gré(f(x) — f(a)) =0.

Para n =1, si f es derivable en a, entonces

o Bilfa@) L f@) - fo) = fa)@ =)

r—a Tr— Qa r—a Tr—a

:()7

como ya habiamos remarcado al principio de la seccién. En general, al aumentar n esperamos
que el resto se anule cada vez mas rdapido al acercarnos a a. Para formalizar esto, comenzamos
con una observaciéon fundamental que pone en relacion el polinomio de Taylor de una funcién y
el de su derivada.

Proposicién 5.41. Sin € NU{0} y f es n+ 1 veces derivable en a € A, entonces

(Tn+1[f7 CL])/ = Tn[f/a a]'
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Demostracién

Es un célculo directo:

, B n+1 f(k) (a) o n+1 f(k:) (CL) B
(Tn-i-l[fva]) (x>_k§1 k! k(x—a)k 1_k:1 (k—].)' x_a)k !
n o p(k+1) a n  pr(k) a
:Zif k'( ) (m—a)kzzf k:'( )(gv—a)k:Tn[f/,a](:c).
k=0 ’ k=0 ’

.

Teorema 5.42 (Férmula infinitesimal del resto). Sea I un intervalo no trivial, n € Ny
f € D" YI). Si f es n veces derivable en a € I, entonces

o Balfid@) _ o f@) =TS al(@)

T—a (g; — a)n r—a (_fI; —_ a)n =0.

Ademas, T,[f,a] es el tnico polinomio de orden n que verifica la igualdad anterior.

Demostracion

Hacemos la demostracién por inducciéon en n, teniendo en cuenta que el caso n = 1 es
ya conocido. Supongamos entonces que para algiin n € N el teorema se cumple para
toda funcion que cumpla las hipdtesis. Tomemos ahora f € D™(I) con f n+ 1 veces
derivable en a.

De forma clara, el cociente

f(@) — Tosa[f, al(x)

(SU _ a)n+1
cumple las hipotesis de la primera regla de I’'Hopital, lo que nos permite considerar el
cociente de las derivadas:

f'(@) = (Tealf.a)) (@) _ f@) =Tulf'al@) 1 Ralfa)@)
(n+1)(x —a)” (n+1)(z —a)” n+1 (z—a)

Como f’ € D™ 1(I) y es n veces derivable en a, la hipétesis de induccién aplicada a f’
y la primera regla de I’Hopital dan:

1 Rn[f',a](l‘):o N Hmw

sman+1 (z—a)? a—a (z—a)"t! =0

Para demostrar la unicidad, supongamos que P es un polinomio de orden n, distinto
de T,,[f, a], cuampliendo
- P
@)~ P)

r—a (g; — a)n

= 0.

Definimos Q(x) = P(x) — Ty[f,a](z) = Sr—oar(z — a)¥, que es otro polinomio de
orden n. Como @Q(x) no es idénticamente nulo, al menos uno de sus coeficientes serd
distinto de cero. Sea m = min{k : oy, # 0}. Entonces, para x # a,

Qx) . k—m . Qx)
Waﬁk%:ﬂak(x_“) = o

= # 0.
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Pero como n > m, podemos usar lo demostrado anteriormente para concluir que

i Q) _ gy (P10 S - Tullal)

e=a (r —a)™  a—a (x —a)m (€ —a)m

una contradiccién. [ ]

Notaciéon: En el contexto de la formula infinitesimal del resto, a menudo suele usarse
la notacion de Landau. Segin esta, si f,g : I — R son funciones definidas en un
intervalo I y a € I, decimos que f es de orden inferior a g cuando x — a, y escribimos
f=o(9(x)) (x = a), cuando

Ve>036>0:[zel, O0<|z—a|<d = |f(x)]<elg(z)]].

En particular, si g(z) # 0 para todo x € I \ {a}, se tiene

lim @ = 0.

Usando esta terminologia, suele abreviarse la férmula infinitesimal del resto como
f(x) =Talf, a](z) +o((x — a)")  (z — a).

Esta notacién debe entenderse como que f pertenece a una clase de funciones que
verifican una cierta propiedad, y no manipularse como si de una identidad algebraica
se tratase.

N

La moraleja es que, conforme n aumenta, mas laborioso resulta calcular el polinomio de Taylor
de orden n de una funcién, pero mejoramos la aproximacion obtenida, puesto que la diferencia
f—T,[f,al] tiende a cero méas rapido que (z — a)™.

Si separamos el dltimo sumando del polinomio de Taylor en la férmula infinitesimal del resto,
obtenemos una nueva expresion para la derivada n — ésima.

F™(a) =n! lim f(z) = Toa[f, a](x)

r—a (;1; — a)”

El interés de esta férmula radica en que permite calcular f(™)(a) conociendo tnicamente f*)(a)
para 0 < k < n—1, que es la informacién que necesitamos para conocer T,,[f, a](x). Si se quisiera
obtener (" (a) usando la definicién, tendriamos que calcular f*)(z) para todo 0 < k <n —1
al menos para todos los x cerca de a.

Vemos en los siguientes ejemplos cémo el polinomio de Taylor puede usarse para calcular limites
y, codmo la unicidad de este nos permite encontrar sus coeficientes una vez calculado un cierto
limite.

| Ejemplo

Problema. Calcular el polinomio de Taylor de grado 3 en x = 0 de la funcién

f(z) =log(1 +sinz).
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Usar este desarrollo para determinar el valor del limite

2

. log(1+sinz) —x+ %
lim 3 .
z—0 X

Resolucidn. Si usaramos la regla de 'Hopital para calcular este limite, tendriamos
que aplicarla tres veces. En cambio, el polinomio de Taylor en torno a 0 simplifica
notablemente las operaciones.

f(0)=o0.
@)= e J(0) =1
e e - RIS
() = —cosz (1 +sinx)? +2(1 +sinz) cosz (sinz + 1) L @0 =1

(1+sinx)?
Por tanto, el polinomio de Taylor de orden 3 de f en 0 es

2 23

T5f,0](z) = x — ?4-?

La férmula infinitesimal del resto nos permite escribir

x2 3 , RS(ﬂf)
f(x):x—?—i—F#—Rg(x), con }clg}) 3

De aqui obtenemos

m log(1+sinz) —x + ‘%2 — lim %3 + R3(z) _ 1

z—0 3 z—0 x3 6

\

| Ejemplo

s N

Evaluar el siguiente limite:
1 1 4y _ 4
T Gk k)
z—0 x

Nota: Aunque ain no hemos dado una definicién rigurosa de la funcién logaritmo,
para este ejemplo solo necesitamos conocer que es la tinica funcién R™ — R tal que
log/(z) = % y log(1) = 0.

Resolucién. Al encontrar una indeterminacién del tipo [0/0], uno podria pensar en
afrontar el problema usando la primera regla de I’Ho6pital. Sin embargo, un par de
aplicaciones de este resultado bastan para darse cuenta de que seran necesarias un total
de 8, y que los calculos se alargan a cada paso. Si bien este acercamiento es factible,
veamos como podemos resolver el limite como una sencilla aplicacién de la férmula
infinitesimal del resto.
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Consideramos la funcién f : R — R dada por f(y) =log(1 + y). Como la derivada del
logaritmo es una funcién racional, tenemos f € C*°(R), lo que nos permite calcular

f(0) =0,
Y oY —
f(y)—m f(0) =1,
" _ —1 " _
f (1/)—7(11%)2 f7(0) =-1

Por tanto, T5[f,0](y) =y — %yQ. La férmula infinitesimal del resto nos dice que

1o Jos(1+y) —y + 22
1m

y—0 y2 =0

La funcién ¢ : x + z* es continua en 0 con p(0) = 0, asi que la continuidad de la
composicién de funciones nos da:
log(1 + 2%) — 2% + 148 log(1 + z#) — 2* 1
li 28 ) 2 ) et e
z—0 x8 0 x8 2

Usando la caracterizacién del polinomio de Taylor, hemos probado ademas que
4 2 1og
Tyllog(1 +2%),0] =« — ",

sin necesidad de calcular las ocho derivadas de esa funcién.

. J

La féormula infinitesimal del resto permite sustituir la condicién necesaria de extremo relativo
por otra mas fuerte que es necesaria y suficiente.

Proposicién 5.43. Sea I un intervalo, a € I°, n € Ny f € D" (I). Supongamos que
f® @) =0 paral<k<n, y F™(a) # 0.
Entonces:
(i) Sinespary f(a) >0, f tiene un minimo relativo en a.
(ii) Sin es pary f™(a) <0, f tiene un mdzimo relativo en a.
(iii) Sin es impar, f no tiene un extremo relativo en a.

En particular, f tiene un extremo relativo en a si y sélo si n es par.

Demostracion

Como f(k)(a) =0 para 1 < k < n, el polinomio de Taylor de orden n de f en a es

f™(a)

n!

Tolf,al(z) = fla) + (z —a)".

Por la férmula infinitesimal del resto,

@) ) _ fa)
z—a  (x—a)” n!
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De aqui se deduce que, cerca del punto a, el cociente de la izquierda tiene el mismo
signo que f™(a), lo que nos proporciona un 6 > 0 tal que, si 0 < |z — a| < 4, entonces

f(x) — f(a)

(@ —a)"

- f"M(a) > 0. (%)

) coincide
#(a) pora
(z) < f(a)

= Sinespar, (x —a)” >0 para x # a, y por (x) el signo de f(z) — f(a
con el de (™ (a) cerca de a. Por tanto, si f(a) > 0 resulta f(z) >
z préximo a a (minimo en @), mientras que si f((a) < 0 resulta f
(maximo en a).

= Sin esimpar, (x — a)™ cambia de signo al cruzar a. La desigualdad (x) implica
entonces que f(x) — f(a) cambia de signo en cualquier vecindad de a, luego no
puede haber extremo relativo en a.

\ J

Aunque el resultado anterior nos proporcione una condiciéon necesaria y suficiente que deben
cumplir los extremos relativos, no debe entenderse como una regla que puede aplicarse siempre.
De entrada, las hipdtesis de esta proposicién no tienen por qué cumplirse. Por ejemplo, una
funcién f puede tener un extremo relativo en a € I sin ser siquiera continua en dicho punto, o
puede que f’'(a) = 0, pero que f no sea dos veces derivable en a.

Ejercicio: Sea f € D3(R) con f'(0) # 0,y g : R — R la funcién dada por g(z) = 2 f(z)
para todo z € R. Probar que g tiene un extremo relativo en = 0 si, y solo si, f(z) # 0.

La férmula infinitesimal del resto describe la rapidez con la que el resto de Taylor de una
funcién en un punto a se hace cero al acercarnos a a, pero no aporta informacién sobre el
valor de dicho resto en puntos distintos de a. Si imponemos unas hipdtesis ligeramente mas
fuertes, obtendremos ahora una descripcién del resto de Taylor que si permite, en muchos casos,
estimar ese valor. A los resultados de este tipo los agruparemos bajo el nombre genérico de
Formulas de Taylor; la diferencia entre unas y otras estd, basicamente, en la expresion concreta
que proporcionan para el resto.

Teorema 5.44 (Férmula de Taylor con resto de Lagrange). Sea I un intervalo no trivial y
sea f € C™(I) N D"tL(I°), con n € NU {0}. Entonces, para cualesquiera a,r € I con a # x,
podemos escribir

f(n+1)( C)
(n+1)!

donde ¢ es un punto intermedio entre a y x, es decir,

)n+1

Ru[f, al(z) = (z —a)"",

min{a, z} < ¢ < méx{a,x}.

Demostracion

Sean a,x € I con a # x, que consideraremos fijos en todo el razonamiento, y sea

J = [min{a, 2}, max{a, z}|,

intervalo que obviamente verifica J C I y J° C I°. Aplicaremos el teorema del valor
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medio generalizado a las funciones

o R, Zf Ja—tF, )= —(@— )™ vie .

Como f € C™(I) N D"T(I°), se deduce que ¢ € CY(J) N D'(J°), mientras que
1 € C*(J) por ser polinémica. El TVMG nos da un punto ¢ € J° tal que

Solo queda reescribir esta igualdad en términos de f. Empezamos por lo més sencillo:

= f® a) k
p(z) —pla) = flz) =) (z —a)" = Rylf,a](z).
k=0

Ademas,
() —pla) = (x —a)"™, () = (n+1)(x—c)"

El célculo de ¢'(c¢) tampoco ofrece dificultad. Para ¢t € J tenemos

n k 1) (k)
SO 22( + () _t)k (fk _(13 (SL' t)k:—l)

:kf% T (t >( t)'ﬂ_gf(il!)(t)(x—t)’“
FrD ()
= T(x — )",
y, en particular,
o)=L

Al sustituir los valores de las derivadas, obtenemos

(n+1) (o
f * ( )(x_c)n(x_a)n+1’

n!

(n+1)(x = ¢)" Ru[f, al(z) =

y la igualdad buscada se obtiene dividiendo ambos miembros por (n+1)(z—c)” #0. B

\

En el caso n = 0, la hipétesis del teorema anterior se reduce a f € C°(I)N D' (I°) y la conclusién
que se obtiene es

f(@) = fa) = fi(e)(z — a),
que coincide exactamente con la hipotesis y la tesis del teorema del valor medio. Podemos
afirmar, por tanto, que la férmula de Taylor generaliza el teorema del valor medio, de la misma
manera que la férmula infinitesimal del resto generalizaba la definicién de derivada: en ambos
casos se pone en relacion el comportamiento de la funcién con el de sus derivadas sucesivas.

| Ejemplo

Problema. Usando la férmula de Taylor, aproximar /e con un error menor a 1074,

Nota: Todavia no hemos dado una definicién completa de la funcién exponencial, pero
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para este ejemplo solo debemos recordar que es la tinica funcién derivable exp : R — R*
tal que exp’(x) = exp(z) y exp(0) = 1.

Resolucion. Sabiendo que la derivada de la exponencial es ella misma, tenemos
inmediatamente que exp € C°°(R) y su polinomio de Taylor es, para cada n € N,

(& x
Tn[eXp,O](l‘) = Z Exk = Z E
! i—o I

Como estimaciéon de /e usaremos, por supuesto, T,[exp,0](1/6) para un n € N
conveniente. Pasamos a determinar qué valor de n necesitamos para obtener un error
menor a 1074

La férmula de Taylor nos dice que, para algun ¢ € (0,1/6),

€€ 1 n+1 3
Rulesp.00/8) = =55 (5) < e

Para n = 3 ya tenemos Rsexp, 0](1/6) = 15565 < 1071, Asf pues,

3
1 1531
T3(exp7 1/6 = Z | %7

aproxima a /e hasta el tercer decimal.

Nos damos cuenta de que, al aumentar n € N, podemos hacer el error R, [exp,0](1/6)
tan pequeno como queramos, ya que {(nﬂ)%} — 0 (n — +00). En realidad, lo que
tenemos es la suma de una serie:

+00
1
1/6 _ i =
e’ = ngm T, lexp,0](1/6) + nEIfoo Fnlexp, 0](1/6) = nz:% nl6n’

\

J

En lo que sigue, fijamos un intervalo no trivial I, una funcién f € C°°(I) y un punto a € I°.
Nos preguntamos si lo que hemos hecho con la funcién exponencial y el punto x = 1/6 puede

hacerse para otros puntos x € I, es decir, si

_ = n
f(x) —nEIEOOT [f,al( Z o x—a) .
e’ e’
T2 T2
3 3
] ; ; Tl ] ; Tl
a=20 1 r#a a=0 x#a

(5.3)

Para cada n € N, sabemos como se comporta T, [f,a] para x cerca de a. Nos preqguntamos si
en puntos x # a el polinomio T,[f,a](x) también es una buena aprozimacion de f(x) al hacer

n — —+00.
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Para estudiar este problema, conviene adoptar el segundo punto de vista, y en vez de trabajar
con la sucesion {T,[f, a](z)}, hacerlo con la serie que aparece en el tercer miembro, llamada la
serie de Taylor de f en el punto a.

-

Nota: Como consecuencia de la férmula infinitesimal del resto tenemos que, para cada
n € NU {0}, existe § > 0 tal que, si 0 < |x — a| < §, entonces

0 < [Rulf,al(x)| < |z —al".

Podriamos pensar, ingenuamente, que tan pronto |z — a| < 1, se tendra (5.3), puesto
que entonces lim,,_, 1 | — a|” = 0 y por tanto lim,_,~ R,[f, a](z) = 0.

Este razonamiento es erréneo, y la clave esta en que el § > 0 encontrado depende de
n. Es perfectamente posible que d(n) — 0 cuando n — +o00, haciendo que la identidad
anterior solo sea valida para x = a, lo que nos dara a posteriori un desarrollo en serie
de Taylor perfectamente initil, pues la serie serd convergente solo para x = a.

iEs muy distinto fijar n € NU {0} y tomar limite z — a que fijar un z € I y tomar
limite n — +oo!

N

Definicién 5.45 (Serie de Taylor). Sea x € I. Llamamos serie de Taylor de f en el punto a
evaluada en x a la serie numérica

() (4
Zf ( )(m_a)n.

Para cada n € NU {0}, su n-ésima suma parcial coincide con el polinomio de Taylor de orden n:

n ) (g
L,falw) = Y T
k=0 ’

z —a)k.

Cuando pensamos en z como variable, hablamos simplemente de la serie de Taylor de f en a.

Usando la férmula de Taylor con resto de Lagrange, sabemos que, para cada n € NU {0}, existe
un punto ¢, situado entre a y = tal que

(n+1) cn

Usando el criterio del cociente, nos damos cuenta de que la serie

Z(ﬂf_a)

|
0 n!

es absolutamente convergente, luego la sucesiéon
(z —a)™ —0
(n+1)! '

No es dificil adivinar entonces que una condicién suficiente para tener (5.3) es que la sucesién
"+ (c,) sea acotada.
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Proposicién 5.46. Sea I un intervalo no trivial, f € C*°(I), a € I° y x € I. Supongamos que
se cumple la siguiente propiedad:

Para toda sucesion {cp}n>0 de puntos comprendidos entre a y x (es decir, min{a,z} < ¢, <
max{a,z} para todo n), la sucesion {f™+V(c,)}ns0 es acotada.

Entonces la serie de Taylor de f en a, evaluada en =,

es convergente y su suma es f(x). [ |

En general, la sucesién {f"*1(c,)} podra ser divergente, dando lugar a series no convergentes,
o0 a series convergentes cuya suma difiere de f(z).

A las funciones que verifican (5.3) se les da el nombre de funciones analiticas.

Definicién 5.47. Sea I un intervalo no trivial, f € C*°(I) y a € I°. Decimos que f es analitica
en a si existe un 6 > 0, que depende de a, tal que (a —d,a+0) C Iy

+oo £(n)(,,
f(x):zf (a)

n=0

‘ (x—a)® Vze(a—d,a+)).
n!

Si I = I°, decimos que f es analitica en [ si es analitica para todo punto a € I. El conjunto de
las funciones analiticas en I se denota por C¥(I).

La definicién anterior no deja dudas: las funciones analiticas en I son un subconjunto de las
funciones de clase C*° en I. Cabe preguntarse, como hicimos a principio de la seccién, si esta
inclusion es estricta, esto es, si pueden existir funciones para las que (5.3) solo ocurra en el caso
trivial £ = a. La respuesta es afirmativa.

| Ejemplo

e N

Consideramos la funcién f : R — R dada por

{e_l/xQ, x #0,

J(@) = 0, x = 0.

Se tiene que f € C*°(R) pero f no es analitica en x = 0.

Resolucion. Es facil comprobar por induccién que, para cada n € N, la derivada
n-ésima de f en los puntos x # 0 tiene la forma

@) =P ) e

T

donde P,, es un polinomio. Haciendo un cambio de variable, tenemos entonces

lim f™(2) = lim Pn(;r)e_g”2 =0 para todo n € N.

z—0 r—+o00

Por tanto, f es indefinidamente derivable en R con f(™(0) = 0 para todo n. En
consecuencia, el polinomio de Taylor de orden n de f en a =0 es

n k)
CATRII SEAL PR
k=0 ’
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y la serie de Taylor de f en 0 es simplemente

™) .

n!

=0, x eR.
n>0

Esta serie converge para todo z, pero su suma sélo coincide con f(z) en = = 0, ya que
flz) = e~1/2? # 0 para cualquier z # 0.

J

\

Por conveniencia, concluimos esta seccién con el desarrollo en serie de las funciones elementales,
que discutiremos y probaremos una vez que las hayamos introducido adecuadamente en el
siguiente capitulo.

Proposicion 5.48. Se tiene:

= Para cualesquiera a,z € R,

X __ i _ n
e’ = 7;) " (x —a)
= Para a =0, y cualquier x € R,
+oo ﬂf2n+1 +oo xQn
sinz = - cosT = 1" )
g( ) (2n +1)! HZ:O( ) (2n)!

= Dado a > 0, se tiene

400 1
logz = loga + z:(—l)"'H — (x —a)", z € (0,2a).

oyt na"
» Paraa=0yze[-1,1],
+o00 x2n+1
t = 1" .
arctan ;::0( ) o T 1

Ejercicio: Demostrar que tan(™(z) = P,(tanz) para todo n € N, donde P, es
un polinomio (no necesariamente de grado n). Usa esto para calcular Tg[tan, 0](z).
Ejercicio: Calcular los siguientes limites

e* —cos(v2x) — x tan z arctan r — x2

lim lim
z—0 (tan )2 T 250 6

Ejercicio: Encontrar «, 3,7 € R de forma que

I (V1425 —1—asz®)(z — tanz — fa?)
zg% x15 -7




Capitulo 6

Funciones integrables

6.1 Continuidad uniforme

Como paso previo al estudio del Calculo Integral, introducimos una propiedad mas fuerte que la
continuidad, que es la continuidad uniforme, que serd fundamental para demostrar la existencia
de la integral.

Recordamos la definicién de continuidad: si f: A — R una funcién continua, entonces podemos
escribir:

Vre AVe>030>0: ye A, ly—z|<d = |f(y) — f(x)] <e. (C)

Aqui 0 depende de g, pero también del punto z € A que estemos considerando. Fijado ¢ > 0,
algunos puntos de A obligan a tomar § muy pequefio, mientras que otros permiten un J
relativamente grande, segtn la rapidez con que varie f cerca de cada punto.

La idea de continuidad uniforme es exigir que, para cada € > 0, podamos encontrar un mismo
0 > 0 que funcione para todos los puntos del conjunto A.

Definicion 6.1. Sea f: A — R. Diremos que f es uniformemente continua en A cuando, para
cada ¢ > 0, existe § > 0 tal que, si z,y € A verifican |y — z| < 6, entonces |f(y) — f(x)]| < €.
Simbdélicamente,

Ve>030>0: z,yc A, ly—z|<d = [fly) — flz)] <e. (CU)

La diferencia entre (C) y (CU) es sutil pero importante: en la continuidad puntual, el § puede
depender de € y del punto x, mientras que en la continuidad uniforme § sélo depende de . Es
inmediato que, si f es uniformemente continua, entonces f es continua. El reciproco, en cambio,
es falso, como veremos enseguida.

Proposicién 6.2. Una funcién f: A — R es uniformemente continua en A si, y solo si, para
cualesquiera dos sucesiones {y,} v {z,} de puntos de A tales que {y, — x,,} — 0, se cumple

{f(yn) = f(zn)} = 0.

Demostracion

Sea ¢ > 0. Como f es uniformemente continua, tenemos un 6 > 0 tal que si

141
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|x —y| < ¢ entonces |f(x) — f(y)| < e. Por otro lado, sabemos que {y, — z,} — 0,
luego existe m € N tal que, para todo n > m, se tiene |y, — x,| < 0, y por tanto

|f(yn) — f(xn)] < e. Hemos probado que {f(y,) — f(xn)} — 0.

Para la implicacién reciproca, suponemos que f no es uniformemente continua, y

construiremos dos sucesiones {z,} e {y,} tales que {z,, — y,} — 0 pero |z, — yn| - 0.

Como f no es uniformemente continua, encontramos un €9 > 0 tal que, para cada § > 0,
existen x,y € Acon |y —z| <y |f(y) — f(x)| > 0. Para cada n € N aplicamos esto
con 0 = 1/n y obtenemos puntos &, y, € A con |y, —x,| < 1/ny |f(yn) — f(xn)| > 0.
Por tanto, {f(x,) — f(z,)} no puede converger a 0. [ |

u J

Usando esta caracterizacién, encontramos ejemplos sencillos de funciones continuas que no son
uniformemente continuas.

| Ejemplo

s a

La funcién f : R — R dada por f(x) = x? para todo z € R es continua pero no es
uniformemente continua.

Resolucidén. Consideramos las sucesiones z, = n + % e y, = n para todo n € N.
Claramente {x, — y,} — 0, pero

1 1 1
w”Q_yHZ_(xn—yn)(anryn)_n(2n+n> =2+ 522

\

Introducimos ahora una familia importante de funciones uniformemente continuas.

Definicién 6.3. Sea f: A — R. Diremos que f es lipschitziana cuando existe una constante
M > 0 tal que
lfly) = f@)| <Mly—zf Va,yecA (6.1)

Si f es una funcién lipschitziana, existe una constante minima My > 0 que verifica la desigualdad

anterior, a saber,
1f(y) = f(@)]

ly — x|

Dicha constante se denomina la constante de Lipschitz de f.

Mgzsup{ :x,yeA,x#y}.

Proposicién 6.4. Toda funcién lipschitziana es uniformemente continua.

Demostracion

Dado £ > 0, basta tomar 0 < JM < &; entonces, si |y — x| < J, se tiene

|fy) = f(2)] < My —z| <e.

. J

Proposicién 6.5. Sea I un intervalo no trivial y f € C(I) N D(I°). Las siguientes afirmaciones
son equivalentes:
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(1) f es lipschitziana en I.

(2) La derivada f’ estd acotada en I°, es decir, existe M > 0 tal que |f’(z)| < M para todo
x e l°.

En el caso de que se verifiquen (1) y (2), la constante de Lipschitz de f viene dada por

My =sup{|f'(z)|:z € I°}. (6.2)

Demostracién

(1) = (2). Sea My la constante de Lipschitz de f. Para z € I° y y € I, y # x, se tiene

’ﬂw—f@)
y—z

< M.

Tomando limites cuando y — = obtenemos |f'(z)| < My, de donde se deduce que f’

estd acotada y que
sup{ |f'(z)] : x € I°} < M.

(2) = (1). Sea M = sup{ |f'(z)| : = € I° }, que existe por hipdtesis. Dados z,y € I con
x # y, el TVM proporciona un punto ¢ € I° tal que

y por tanto
[f(y) = f@) = £ ()lly — =] < My - zl.

Esto prueba que f es lipschitziana en I para la constante M. Por tanto, My < M por
definicién de la constante de Lipschitz. |

. J

Del resultado anterior y el teorema de Weierstrass se deduce un criterio cémodo para garantizar
que la derivada esté acotada.

Corolario 6.6. Sean a,b € Rcona < by f € C'la,b]. Entonces f es lipschitziana en [a, b], con

constante de Lipschitz
My = méax{ |f'(z)| : z € [a,b]}.

Como ejemplo de funciéon uniformemente continua que no es lipschitziana, consideramos la
funcién raiz cuadrada.

| Ejemplo

>

La funcién f: RS‘ — R, f(x) =/, es uniformemente continua pero no es lipschitziana.

Resolucion. Para probar la continuidad uniforme, tomamos x,y € ]Rar conzr <Yy
observamos que

gz YT Y
VY=Vl = vy -V V@+¢5§

VY=Vl < y/ly —al,

y esta desigualdad sigue siendo valida si x > y.

- Yy—T
< =Vy—z=\/ly—=z
VI T WVy—=z ’

luego
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Dado € > 0, basta imponer |y — z| < €2 para que |\/y — v/z| < €, lo que muestra que f
es uniformemente continua.

Sin embargo, f no es lipschitziana en Rar . En efecto, f es derivable en (Rar)o =RTy
1
2\/x’

que se hace arbitrariamente grande cuando z — 0T. Por la proposicién anterior, esto
impide que exista una constante de Lipschitz en Rg .

fi(z) =

\

El resultado siguiente mejora lo visto mas arriba: no sélo las funciones derivables con derivada
continua en un intervalo cerrado y acotado son uniformemente continuas, sino que cualquier
funcién continua en un intervalo de ese tipo lo es.

Teorema 6.7 (Teorema de Heine). Sean a,b € R con a < by f:[a,b] — R una funcién
continua. Entonces f es uniformemente continua en [a, b].

Demostracién

Razonamos por contradiccién. Supongamos que f no es uniformemente continua. Por
la caracterizacién mediante sucesiones, existen €9 > 0 y dos sucesiones {y,} v {z,} de
puntos de [a, b] tales que |y, — z,,| — 0 pero

|f(xn) = f(yn)] = €0 para todo n € N.

Como {z,} es una sucesion en el intervalo cerrado y acotado [a,b], el Teorema de
Bolzano-Weierstrass nos proporciona una subsucesion {,(,)} que converge a cierto
r € [a,b]. Del hecho |y, — z,| — 0 se deduce que también {y, )} converge a x.

La continuidad de f en x nos da

f(xa(n)) — f(x)a f(ya(n)> — f($),
y por tanto
|f(ya(n)) - f(xo'(n)” — 0.

Esto contradice la condicién | f(z,) — f(yn)| > €0 para todo n, aplicada a la subsucesién.
La suposicién inicial era falsa y f es uniformemente continua en [a, b]. |

. J

Este teorema pone de manifiesto que la continuidad uniforme, al igual que la convexidad y a
diferencia de la continuidad puntual o de la derivabilidad, es una propiedad global: depende del
comportamiento de la funcién en todo el dominio considerado. Como consecuencia, si f: R — R
es una funcién continua, entonces su restriccién a cualquier intervalo cerrado y acotado [a, b] es
uniformemente continua.

Ejercicio: Sea f: RT™ — R dada por f(x) = 1/z para todo x > 0. Dado a > 0, probar
que f |[a7+oo} es lipschitziana, pero f |(0,a] no es uniformemente continua.
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6.2 La integral de Riemann

La nocién de integral estd intimamente ligada, desde sus origenes, a las ideas de area y volumen.
Ya en la antigiiedad se utilizaban procedimientos como el método de exhaucién, comentado al
inicio del capitulo 5, para aproximar el area de regiones planas o el volumen de sélidos mediante
figuras cada vez mas finas, que pueden entenderse como antecedentes lejanos e inspiracién de la
teoria moderna de la integracién. Sin embargo, no fue hasta el siglo XIX cuando se formul$ una
definicién matematica precisa de integral, debida a Cauchy, y se empezé a estudiar la integral
como un objeto tedrico con significado propio, mas alla de ser simplemente la operaciéon inversa
de la derivacién.

La necesidad de refinar el concepto de integral surgié cuando el andlisis empezé a trabajar con
funciones cada vez mas generales. El desarrollo de las series de Fourier y el cambio de punto
de vista sobre qué debe considerarse una funcién mostraron que la intuicién geométrica de
area bajo la curva ya no bastaba: hay funciones cuya grafica no determina de manera obvia
una regién con area bien definida. Ejemplos como el de la funcién que en [0, 1] vale 2 en los
racionales y 1 en los irracionales ponen de manifiesto que es necesario precisar mateméticamente
qué queremos decir con drea antes de hablar de integrales.

¢sDetermina f un recinto con drea? En caso afirmativo, jsu drea es 17 527

En este capitulo estudiaremos la integral de Riemann, que mejora y generaliza la definicién de
Cauchy sin anadir dificultad adicional. Su construccién se basa en aproximar el area mediante
sumas de rectangulos cada vez maéas finos y en poner en juego las herramientas de limites
desarrolladas en capitulos anteriores. La teoria de la integral que hoy se considera mas completa
es la integral de Lebesgue, adecuada para tratar funciones muy generales, pero cuyo estudio
queda fuera del alcance de este curso. Nuestro objetivo serd comprender bien la integral de
Riemann, sus propiedades basicas y, sobre todo, el Teorema Fundamental del Céalculo, que
establece el vinculo profundo entre derivaciéon e integraciéon y convierte a la integral en una
herramienta central del andlisis.

Comenzamos especificando el tipo de conjuntos cuya area queremos definir.

Definicién 6.8. Sea f: [a,b] — R una funcién acotada. Llamamos R(f;a,b) a la regién del
plano R x R limitada por la gréifica y = f(x), el eje de abscisas y las rectas verticales x = a y
z =b.

Definicién 6.9. Sea f: A — R una funcién. Definimos la parte positiva y la parte negativa de
f como las funciones f, f~: A — R dadas por

[f (@) + f(x)
2

[f (@) = f(x)

INOE ;

— mix{f(2),0}, [ (x) = — mix{—f(z),0}.
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Conjunto R(f,a,b) de una funcién que cambia de signo.

y=f(z) y=[f"() y=1r"(2)

A

Nétese que las funciones parte positiva y parte negativa son ambas positivas. Ademas,
se tienen las siguientes relaciones, de comprobacién inmediata:

= f=ft—fTylfl=

« Si f(z) > 0, entonces f*(z) = f(z) y f~(x) =

= Si f(x) <0, entonces f*(z) =0y f~(z ):—f( ).

\ J

Para dar sentido al area de R(f, a,b) usando la integral de Riemann, aproximamos este recinto
mediante rectangulos cada vez més finos. Para ello, comenzamos dividiendo el intervalo [a, b] en
un nimero finito de subintervalos que no se solapan.

Definicién 6.10. Sean a,b € R con a < b. Una particién de [a,b] es un conjunto finito de
puntos
P={a=xy<z1<20<- <Tpp1 <pp = b},

que divide al intervalo [a,b] en los subintervalos [xp_1, 2], para k=1,...,n

Dada una funcién f: [a,b] — R acotada y una particién P de [a, b], elegimos en cada subintervalo
[*k—1, k] un punto t;. Sobre cada uno de ellos consideramos el rectdngulo de base [ry_1, %] ¥
altura f(tx) (pudiendo quedar por encima o por debajo del eje x segin el signo de f(¢x)). La
suma de las areas con su signo es lo que llamamos suma de Riemann.

Definicién 6.11. Sea P = {a = z¢p < --- < z,, = b} una particién de [a,b] y, para cada
k=1,...,n, tomemos un punto cualquiera t; € [z)_1,zx|. Llamamos suma de Riemann de f
asociada a P a la cantidad

= z": ftr) (o — 2p—1)-
k=1

Nétese que para cada particion P, podemos considerar infinitas sumas de Riemann dependiendo
de cémo se elijan los puntos ¢y € [xx_1,2k]. Si f toma valores positivos y negativos, podemos
descomponerla como f = fT — f~. Entonces

:zn:f(tk)(xk_xkz 1) zn:er (te) = f~(th)) (2 — 2p—1) = o(fF, P) — o (f7, P).

k=1 k=1
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En este caso, o(f, P) puede interpretarse como una aproximacién del drea de R(f™,a,b) menos
el area de R(f~,a,b).

Para controlar mejor las aproximaciones introducimos las sumas superior e inferior, que se
obtienen tomando, en cada subintervalo, las alturas maximas y minimas que puede alcanzar f.

Definicién 6.12. Sea P = {a = 29 < --- < x, = b} una particién de [a,b] y sea f: [a,b] - R
una funcién acotada. Definimos

My = sup{f(x): x € [xg_1,2k] }, my = inf{f(z) : z € [xx_1,zx]}

para k= 1,...,n. Las sumas
n n
S(f,P) =" My (zx — xp-1), I(f,P) =" my (zx — Tp-1)
k=1 k=1
se llaman, respectivamente, suma superior e suma inferior de f para la particién P.

y = f() y=f(x)

X

sgp) b

R

Una propiedad sencilla pero importante es la siguiente: si ¢ € [xp_1, zx], entonces my < f(tx) <
My, para todo k, y por tanto

I(f,P) <o(f,P) < S(f,P)
para cualquier suma de Riemann o(f, P) asociada a la particién P.

Estas sumas tienen una interpretacién geométrica clara: S(f, P) e I(f, P) son aproximaciones,
por exceso y por defecto respectivamente, del drea de R(f™,a,b) menos el area de R(f~,a,b).

Supongamos que f: [a,b] — R es acotada y positiva. Para cada particién P de [a,b] hemos
definido las sumas inferior y superior

I(f,P) < S(f,P).

El 4rea exacta de la region R(f,a,b) debe ser un niimero mayor o igual que cualquier suma
inferior y menor o igual que cualquier suma superior. Llamemos P[a, b] al conjunto de todas las
posibles particiones de [a, b]. De hecho, se tiene:

Lema 6.13. Sea f: [a,b] — R acotada. Entonces el conjunto de todas las sumas inferiores de
f estd mayorado, el conjunto de todas sus sumas superiores esta minorado, y se cumple

sup{I(f,P): P € Pla,b]} < inf{S(f,P): P € Pla,bl]}.

Demostracion

Por supuesto, fijada una particién P, se tiene trivialmente que I(f, P) < S(f,P). Lo
que se necesita demostrar es mucho mas restrictivo: que esta relaciéon se mantiene
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independientemente de la particién que tomemos para hacer cada suma.

Empezamos viendo que al refinar una particién al afiadirle un solo punto, la correspon-
diente suma superior disminuye y la suma inferior aumenta.

Dada P = {a =29 < 1 < -+ < x, = b}, consideramos la particién que resulta de
anadirle un punto ¢ entre z;_1 y xp, para algin k € {1,...,n}:

P={a=xg<m < <mp1<c<mzp<- <z, =>}

Al pasar de P a P’, todos los sumandos de S(f, P) se quedan igual salvo el correspon-
diente al subintervalo [zj_1, zk], que se sustituye por la suma de dos. Si nos fijamos en
dichos sumandos, vemos que

sup{f(t) : t € [zp_1,c|} (¢ — xf—1) +sup{f(t) : t € [c, x|} (zk — ©)
<mp(c—ap-1 + ) — ) = mp(Tp — Tp—1)-

Por tanto S(f, P") < S(f,P). Un razonamiento andlogo, usando infimos en vez de

supremos, muestra que
I(f,P") > I(f,P).

Mediante una sencilla demostracién por induccién obtenemos que si P, P’ € Pla,b] y
P C P’ (es decir, P’ tiene al menos todos los puntos de P), entonces

I(f,P) < I(f.P") < S(f,P') < S(f. P).

Tomemos ahora dos particiones cualesquiera P, Q € P[a,b] y consideremos su unién
P UQ, que es una particiéon que refina a ambas. Aplicando la desigualdad anterior a
los pares (P,PUQ) y (Q, P UQ), obtenemos

I(f,P) <I(f,PUQ)<S(f,PUQ)<S(f,Q).

Asi, cualquier suma inferior es menor o igual que cualquier suma superior. En particular,
el conjunto de todas las sumas inferiores estd mayorado por cualquier suma superior y
el conjunto de todas las sumas superiores estd minorado por cualquier suma inferior.
Esto implica

sup{I(f,P): P € Pla,b]} < inf{S(f,P): P € Pla,bl},

tal como queriamos. [ |

\ J

Definicién 6.14. Sea f: [a,b] — R una funcién acotada tal que f(z) > 0 para todo z € [a, b].
Diremos que el conjunto ordenado R(f;a,b) tiene drea cuando se verifica

inf{S(f,P) : P € Pla,b]} =sup{I(f,P): P € Pla,bl}.

Al valor comin lo llamaremos el drea de R(f,a,b). En este caso diremos también que f es
integrable Riemann en [a,b] y definimos

/ab f(x)dx = drea(R(f;a,b)).

Definicién 6.15. Sea f: [a,b] — R acotada. Diremos que f es integrable Riemann en [a, b] si
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lo son f*y f~. En tal caso definimos
b
/ f(z) dx = drea(R(f";a,b)) — area(R(f~;a,b)).

Es facil comprobar que si f es integrable entonces también lo es |f| = f* + f~. Ademas, si |f]
es integrable y lo es f* o bien f~, entonces ambas son integrables. Ademads, se tiene la siguiente
caracterizacion.

Proposicién 6.16. Sea f: [a,b] — R acotada. Entonces f es integrable si, y solo si, para todo
€ > 0 existe una particién P: de [a,b] tal que

S(faPE)_I(fa-PE) <e.

Demostracion

FEsta demostracion no se vio en clase.

En primer lugar, nétese que podemos suponer que f > 0, ya que para toda constante
C € R se tiene

S(f+C,P)—I(f+C,P)=S(f,P)+C(b—a)—I(f,P)—C(b—a)=S(f,P)—I(f,P),

donde hemos usado que las sumas superior e inferior de cualquier constante coinciden
con el area del rectangulo de base b — a y altura C. Por tanto, si f toma valores
negativos, podemos considerar f + inf f, que cumple f + inf f > 0.

Bajo ese supuesto, ser integrable equivale a que
mf{S(f,P): P € Pla,b]} = sup{I(f,P): P € Pla,b]}.

La implicacién en este sentido es inmediata. Por un lado, sabemos que

S(f,P)—1(f,Q) >0 VP,Q € Pla,b].

La hipétesis anterior implica directamente que inf{S(f, P)—I(f,Q) : P,Q € Pla,b]} =
0, y basta considerar que

inf{S(f,P)—I(f,Q): P,Q € Pla, b}
= inf{S(f,P): P € Pla,b]} —sup{I(f,Q) : Q € Pla,bl]}.

Llamemos, por abreviar, a = f: f(x)dx, y sea € > 0. Por definicién de supremo

e infimo, encontramos dos particiones P! y P? que cumplen

a—¢e/2<I(f,PH<a
a<S(f,P) <a+te/2

Consideramos la particién P. = P} U P2, que refina a ambas. Por tanto

a—e/2<I(f,PH<I(f,P.)<a
a<S(f,P.)<S(f,P}) <a+¢/2,

de donde se sigue S(f, P:) — I(f, P:) < €. [ |
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La integral tiene las siguientes propiedades bésicas:

Proposicién 6.17. Sean f,g: [a,b] — R funciones integrables Riemann en [a, b] y sean «, § € R.
Entonces se verifican las siguientes propiedades:

(i) Linealidad. La funcién af + (g es integrable en [a, b] y se cumple
b b b
[ (@f@) + @) do =a [ f@)dr+ 5 [ glads

(ii) Conservacién del orden. Si f(z) < g(x) para todo z € [a, b], entonces

/abf(:r) do < /abgm da

En particular, si f es integrable en [a,b] y m < f(x) < M para todo z € [a, b], se tiene

b
m(b—a) < / Fla)dz < M(b—a).
(iii) Integrabilidad del valor absoluto. Si f es integrable en [a, b], entonces también lo es | f|

y se verifica
b
< [ 1f@)]de.

(iv) Aditividad respecto del intervalo. Si a < ¢ < b, entonces f es integrable en [a,b] si, y
s6lo si, es integrable en [a, ] y en [c, b], y en ese caso

b c b
/f(:z:)d;v:/ f(:n)dm+/ () de

La demostracion de (i) se basa en el simple hecho de que, para toda P € Pla, b], se tiene
I(af + Bg, P) = al(f, P)+ BI(g, P). De la misma manera, si f(x) < g(x), entonces
I(f,P) < I(g,P), lo que nos da inmediatamente (iz).

x)dx

Probamos (iii). Si f es integrable, entonces lo son f* y f~ por definicién, y usando (i)
también lo serd |f| = f* + f~. Ademds, sabemos que

—f(@)| < f(z) < [f(@)]  Va € a,b],

y podemos usar (ii) para concluir que
b
/ f(x)dx
a

/|f |dm</f dm</ |f ()| dz S/ab|f(1‘)\d;v.

Finalmente demostramos (iv). Con el fin de no sobrecargar innecesariamente la notacion,
si tenemos [¢,d]| C [a,b] y P € Plc,d], entonces entendemos que

O'(f, P) = O-(f’[c,d]ap)'

Supongamos que f es integrable en [a,c] y en [¢,b] y sean ¢ € (a,b) y € > 0. Sean
P, € Pla,c| y P> € Ple, b] particiones tales que
€ €

S(f,Pl)_I(f,P1)<§, S(f,PQ)—I(f7P2)<§
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Entonces Py U P; € Pla,b] y se tiene
S(f>P1UP2)_I(f1P1UP2):S(fapl)+s(fvp2)_I(fvpl)_I(LﬂPQ) <e.

Por tanto, f es integrable en [a, b].

Reciprocamente, sea P € Pla,b] tal que S(f, P) — I(f,P) < e. Entonces, si P' =
P U {c}, sabemos que la suma superior decrece y la inferior crece, luego también
S(f,P")—1I(f,P") <e.Como ces un punto de P’, podemos escribir P’ como unién de
particiones Py € Pla,c] y P» € Ple,b]. Tenemos entonces

e>S(f,P) = I(f.P") = (S(f,. Pr) — I(f. P1)) + (S(f. ) — I(f, P»))

>0 >0

lo que nos da

S(f,Pl)—I<f,P1) <eg, S(f,PQ)—I(f,Pg) <e.
|

. J

Nuestro objetivo ahora es discutir qué clase de funciones son integrables con esta nocién de
area que hemos introducido.

Teorema 6.18. Sea f: [a,b] — R. Cada una de las siguientes hipdtesis garantiza que f es
integrable Riemann en [a, b]:

(1) f es acotada en [a,b] y tiene un nimero finito de discontinuidades en [a, b]. En particular,
toda funcién continua en un intervalo cerrado y acotado es integrable en dicho intervalo.

(2) f es mondtona en [a, b].

Demostracion

En ambos casos, para cada ¢ > 0 construiremos una particién P. de [a,b] tal que
S(f,P.) — I(f,P.) < e. Por lo discutido en la demostracién de la Proposicién 6.16,
podemos suponer que f > 0 en [a, b].

Caso (1)| f acotada con un ntmero finito de discontinuidades.

Supongamos primero que f es continua y positiva en [a, b]. Por el teorema de Heine, f
es uniformemente continua, asi que dado € > 0 existe 6 > 0 tal que

€
b—a

[r—yl <o = [flz)-fly)l <

para todos x,y € [a, b]. Tomemos una particién P cuyos subintervalos tengan longitud
menor que 9. Como f es continua, el teorema de Weierstrass nos asegura que existen
Sk, i € [xg—1,x)] tales que

My = f(sk), vy mx= f(tr).

Como |t — sg| < 0, la continuidad uniforme nos dice que

My, —my = f(s) — f(tx) < e/(b—a),
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y por tanto

=E.

S(f, Pe) — I( ZMk_mk )T — Tk—1)

Por el criterio anterior, f es integrable Riemann en [a, b].

Sea ahora f acotada y positiva en [a,b] y continua en (a,b). Tomamos [c,d] C [a,b] de

forma que
€

3
3sup f 3sup f-

Como f es integrable en [c, d] por ser continua, existe P € Pla, b] con S(f, P)—I(f, P) <
5 Sea Q = {a} U P U {b}. Se tiene

S(f,Q) —I(f,Q) < (c—a)sup f+ S5(f, P) + (b—d)sup f = I(f,P) <&

a—c<

y b—d<

Si tenemos un ntmero finito de discontinuidades {di,...,d,} C [a,b], aplicamos el
paso anterior a cada subintervalo donde f es continua salvo en los extremos, y usamos
la propiedad de aditividad de la integral.

Caso (2)| f monétona en [a,b].

Supongamos que f es creciente (el caso decreciente es andlogo). Sea € > 0 y tomemos
una particién P. de [a,b] cuya longitud maxima de subintervalo verifique

max{zy —xp_1:ke{l,...,n}} <

&
f) = fla)

Como f es creciente, en cada subintervalo [xp_1, 2] se tiene

My = f(xr), my = f(zrp-1),

de modo que

S(f, P-) — Zn: f@p—1))(@r — 21-1)-

Acotando cada xp — zp_1 por la longitud maxima del subintervalo, obtenemos

- £
S(f,P-)—I(f,P. f(x =————(f(b)—f(a)) =¢.
De nuevo, el criterio de integrabilidad da que f es integrable Riemann en [a, b]. |
Ejemplo 6.19. Definimos f: [0,1] — R mediante
/=] 4
f(o):L f(CC): nZ::l 27 paraxG(O,l],

Podemos ver que f es decreciente en [0, 1], ya que al aumentar = disminuye 1/x y, por tanto,
|1/z] s6lo puede disminuir, lo que hace decrecer la suma. Ademas, f tiene discontinuidades en
todos los puntos de la forma 1/(n + 1), n € N. Hay, por tanto, infinitas discontinuidades en

[0,1].
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Sin embargo, f es mondtona y acotada, asi que, por el teorema anterior, es integrable Riemann
en [0,1]. La gréfica de la funcién tiene la forma de una escalera decreciente que se aproxima al
valor 1 cuando z — 0.

CT:*)—!
=
N
Wl
no|—=

Llegados a este punto, podemos preguntarnos cémo usar la definiciéon de integral para calcular,
b

en la practica, el valor de / f(x)dx. La idea intuitiva es que, cuanto mayor sea el nimero de
a

subintervalos de la particién y méas pequefias sean sus longitudes, mejor deberia ser la aproxi-

macién obtenida mediante convenientes sumas de Riemann. Para formalizar esto introducimos

la siguiente nocién.

Definicién 6.20. Sea P = {a = 29 < 21 < --- < x, = b} una particién de [a, b]. Llamamos

paso o anchura de la particién P al niimero

A(P) =méax{zy —zp—1 k€ {1,...,n}t}.

La siguiente afirmacion justifica que, para funciones integrables, las sumas de Riemann asociadas
a particiones cada vez més finas convergen todas al mismo valor: la integral.

Teorema 6.21. Sea f: [a,b] — R una funcién integrable y sea { P,,,} una sucesion de particiones
de [a,b] tal que {A(Py,)} — 0 cuando m — +o00. Sea o(f, Py,) cualquier suma de Riemann de
f para la particién P,,. Entonces

Jim (5 P) = Jim o(f, Pa) = lim_ 107, Pa) = [ 1)

Demostracion

La demostracién de este resultado para una funcién integrable cualquiera es altamente
técnico y precisa de herramientas que se escapan a los objetivos de este curso. Por
ello, nos limitaremos a dar una demostracion para el caso méas sencillo en que f es una
funcién continua.

Sea P, una sucesion de particiones de [a, b] con AP, — 0. Dado £ > 0, el teorema de
g

Heine nos da un 6 > 0 tal que si [z — y| < ¢ entonces |f(z) — f(y)| < 3= . Puesto que
AP, — 0, tenemos un mgy € N de forma que AP,, < é para m > 0.

Fijado m > mg, si P, = {a = z9 < ... < x,,, = b}, por el teorema de Weierstrass
existen ty y sx en [rr_1, x| para k= 1,...,n,, tales que
Nm c Nm
S(f, Pm) = I(f Prm) < D 1f(s) — f(te)| ok — 2] < b —a > (@ — ap-1) =€
k=1 k=1

Esto demuestra que S(f, Py,) — I(f, Pn) — 0.
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Ahora escribimos
0 < S(f, Py) /f Vdz < S(f, Pr) = I(f, P) — 0,
0< [ fw)da ~ 1. Pu) < SU. ) ~ 105, P) = 0.

Por tanto, f;f( Ydx < I(f, Pn) < o(f, Pn) < S(f, Pn) —>f£f(a:)dac. [ |

\

Este resultado permite, en algunos casos concretos y con cierto ingenio, calcular integrales como
limite de sumas. Mas adelante veremos métodos sistematicos para calcular integrales; por ahora
es mas util interpretar el teorema en sentido contrario, como herramienta para determinar
limites de ciertas sucesiones. Un caso especialmente frecuente es el siguiente.

Corolario 6.22. Para toda funcién f integrable en [0, 1] se verifica
im0 () = [ e

En efecto, basta considerar la particién P, = {0, 1 - n, ..., 1}, cuyo paso es A(P,) =1/n— 0,y

tomar en cada subintervalo [%, %] el punto t; = %

| Ejemplo

Problema. Calcular los siguientes limites:

(a) lim w

n~>+oo Z \/n n + k (b) HETOO Z n3

k=1

Resolucion.
(a) Para cada n € N, llamamos

Reescribimos cada sumando:

1 1 1
ViR () aiek

Por tanto,

R e R O R

Observamos que f es continua en [0, 1] y que S, es la suma de Riemann asociada
a la particién uniforme de [0, 1] con nodos t; = k/n. Luego,

1 1 1
lim Sn:/ 7dx:[2\/1—|—33} =2v2 - 2.
n—+o00 0 1+2x 0
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(b) Consideramos ahora

Escribimos cada sumando como

(n—k‘)k:l( k‘)k‘

de modo que

So= Ly (- :iijf(i) f2) = (1— ).
k=1 k=1

n

De nuevo, f es continua en [0, 1] y .S,, es la suma de Riemann asociada a la particién
uniforme con puntos t; = k/n, por lo que

1 1 22 23t 1 1 1
lim S, = [ (1—2)zds = T A L
im /0( x)xdx /0<1' z%) dx {2 3}0 57376

n—-+o00

N

Finalmente, damos respuesta a la pregunta que nos hicimos al principio de este capitulo.

| Ejemplo

>~

La funcién f : [0,1] — R dada por

) 2 sizeR\Q,
f(x)_{l six e Q,

no es integrable. Por tanto, la region asociada R(f;0,1) no tiene 4rea (en el sentido de

Riemann).

Resolucién. Consideramos la sucesion de particiones de [0, 1], P,, dada por z; = k

n
para k =0,1,...,n, que claramente verifica x — xp_1 = %, luego AP, — 0.

Construimos dos sumas de Riemann distintas, o1 y o9, eligiendo respectivamente puntos
tr € [xx—_1,zk| todos racionales y todos irracionales. Si f fuese integrable, el resultado
anterior nos dirfa que o1(f, P,) y o2(f, P,) convergen ambas a fol f(x)dzx. Sin embargo,

vemos que
S flte) 1O

O-(f’Pn): = - ]-Zla

TN SED JEAL IS SPEP
k=1 k=1

\

6.3 El Teorema Fundamental del Calculo

Sea f : [a,b] — R una funcién integrable. Dado z € (a,b), la aditividad de la integral nos dice
que f es integrable en [a, x|, lo que nos permite construir una nueva funcién que indica el area
(con signo) acumulada hasta z, esto es,  — [ f(t)dt.

A veces serd preciso necesario medir el drea acumulada desde un punto ¢ € (a,b), lo que hace
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necesario dar sentido a qué entendemos por [ f(t)dt cuando x < c. Para hacer esto, recordamos
que la aditividad de la integral nos da, para cualesquiera * <y < z € [a,b] :

/; F(t)dt = /: F(t)dt+ /y F(t)dt.

Lo natural es buscar una convencién que haga que esta identidad siga siendo cierta cualesquiera
sean los érdenes de z,y, z. Si tomamos x = y vemos que

/w F(t)dt = 0, (C1)

y entonces, sl T = z,

y T
/ F)dt = — / F(H)dt = 0. (C2)
x y

Adoptamos pues las convenciones (C1) y (C2) de ahora en adelante, lo que hace buena la

siguiente definicion.

Definicién 6.23. Sea f : [a,b] — R una funcién integrable y ¢ € [a, b]. La funcion drea de f en
[a,b] con origen en c es la funcién F : [a,b] — R dada por

F(m)—/:f(t)dt, z € [a,b].

Aqui la variable de F', x, aparece como limite superior de la integral, lo que nos obliga a usar
otra variable, ¢, para el integrando. Por construccién,

F(z) = area(R(f*;c,x)) — drea(R(f ;c,x)),

teniendo siempre en cuenta el posible cambio de signo que nos dan las convenciones adoptadas
anteriormente.

Nuestro préximo objetivo es invertir el proceso que acabamos de hacer. Conocida la funcién de
area F(x), jes posible recuperar f(x)? La respuesta a esta pregunta la da uno de los resultados
mas importantes del andlisis matemético, y que relaciona conceptos a prior: lejanos como son
el area bajo una curva y la pendiente de la recta tangente a esta.

Teorema 6.24 (Teorema Fundamental del Calculo). Sea f: [a,b] — R una funcién integrable
y definamos

F(o) :/ F)dt,  z€lab).
Entonces se verifica:

(1) F es continua en [a, b].

(2) En todo punto y € [a,b] en el que f sea continua, F' es derivable y

En particular, si f es continua en [a, b, entonces F es derivable en (a,b) y F'(z) = f(x)
para todo z € [a, b].
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Demostracién

Como f es integrable en [a, b], es una funcién acotada. Por tanto, existe M > 0 tal que
|f(x)| < M para todo z € [a,b].

(1) Sean z,y € [a,b] con x < y. Entonces

[ rwya— [ s -
< [MIs@lde < My - ).

[F(y) — F(x)| =

[ s

Si x >y, entonces serd |F(z) — F(y)| < M(z —y). En ambos casos tenemos
[F(y) = F(z)| < M|y — «f,

luego F' es Lipschitziana en [a, b] y por tanto continua.

(2) Sea ahora ¢ € [a,b] un punto en el que f sea continua. Para = # ¢ escribimos

[ swa-s0 = — [0 - @) ar.

r —cC

F(z) — F(c) o) = 1

r —cC Tr —cC

Dado ¢ > 0, por la continuidad de f en ¢ existe d > 0 tal que, si t € [a,b] verifica
|t — c| < 9, entonces |f(t) — f(c)| < e. Tomemos z € [a,b] con 0 < |z — ¢| < §. Para
todo ¢t comprendido entre ¢ y x se tiene |t — ¢| < |x — | < 9, luego |f(t) — f(c)| < e,y
por tanto

1
|z =

1

r —cC

/:(f(t)—f(c))dt‘g /Cw|f(t)—f(c)dt§‘xic|/cx5dt:€_

Hemos probado que, para todo x € [a,b] con 0 < |x — ¢| < J, se cumple

F(z)—-F
e EL
x—c
Esto demuestra que
F(x) — F(c)
lim ———= =
lim ——— f(o),
es decir, F es derivable en ¢y F'(¢c) = f(c). |

N

Definicion 6.25. Sea I un intervalo no trivial y H, h : I — R dos funciones. Decimos que H es
una primitiva de h si H € D(I) y H'(x) = h(z) para todo x € I.

No todas las funciones admiten primitivas en un intervalo dado. Por ejemplo, una condiciéon
necesaria para que una funciéon admita primitivas es que tenga la propiedad del valor intermedio,
ya que las funciones derivadas la verifican. De hecho, se tiene la siguiente cadena de implicaciones.

Proposicion 6.26. Dada una funciéon f: I — R, donde I es un intervalo no trivial, consideremos
las siguientes afirmaciones:

(i) f es continua en I.
(ii) f admite una primitiva en 1.

(iii) f tiene la propiedad del valor intermedio en I.
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Se verifica que
(i) = (ii)) = (iii).
|

La implicacion (i) = (ii) es el Teorema fundamental del célculo, y (i) = (éi7) lo habiamos
visto como el Teorema de Darboux. Por tanto, hemos encontrado una demostracién alternativa
para (i) = (iii), que es el teorema del valor intermedio para funciones continuas.

En vista de la discusiéon anterior, uno podria preguntarse si toda funcién que admita una
primitiva en un intervalo [a, b] serd integrable en el sentido de Riemann. Por sorprendente que
pueda parecer, la respuesta es negativa.

| Ejemplo

s N

Sea F : [~1,1] — R dada por F(z) = x?sin (%) para z # 0y F(0) = 0. Una
comprobacién rutinaria nos dice que F' € D[—1,1] con

Fl(z) = f(z) = { (Q)xsin (x—lg) — z?’—gcos (%) zi i i 8’

La funcién f admite una primitiva en [—1,1], a saber, F', pero f no es integrable

Riemann en [—1, 1] por no estar acotada.
10

.

Proposicion 6.27. Sea [ un intervalo no trivial y h: I — R una funcién que admite dos
primitivas Hy, Ho: I — R. Entonces existe una constante C' € R tal que

Hy(z) — Hy(z) =C para todo z € I.
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Demostracién

Consideremos la funciéon ¢: I — R dada por

p(x) = Hi(x) — Ha(z).
Como Hy y Hj son derivables en I° y H{(z) = Hj(z) = h(z) para todo = € I°, se tiene
¢ () = Hi(x) — Hy(x) =0 para todo x € I°.

Por el teorema del valor medio, ¢ es constante en I. Tomando, por ejemplo, zg € I y
escribiendo C' = (), obtenemos

Hi(x) — Hy(z) = p(z) =C  Vael,

que es lo que queriamos. [ |

Ejercicio: Razona si es verdadera o falsa la siguiente afirmacién: toda primitiva de
una funcion continua f : [a,b] — R puede escribirse como una funcion de drea de f.

Notaciéon: La integral indefinida.
Sea I un intervalo no trivial y f : I — R una funcién continua. Definimos la integral
indefinida de f como el conjunto de todas sus primitivas en I.

/f(:c)d:z: ={F:I — R: F es una primitiva de f}.

Si F' es una primitiva cualquiera de F, en vista del resultado anterior se prefiere la
notaciéon

/f(:n)dm = F(x)+C.

\

Teorema 6.28 (Regla de Barrow). Sea f: [a,b] — R integrable y supongamos que F': [a,b] — R
es una primitiva de f en [a, b]. Entonces

/abf(t) dt = F(b) — Fl(a).

Demostracion

Sea P, = {a = 29 < x(lm) < < mfﬁ,l < Zn,, = b} una sucesién de particiones

de [a,b] con AP,, — 0. Aplicando el teorema del valor medio a F' en cada intervalo

[a:ffn_l)l, a:,gm)} obtenemos una sucesién de puntos t,(cm) € (5‘”5@”—1)17 x,gm)) tal que

Fla™) = F@) = )@ = al) = FE) 6" - 50,
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Sumando estas igualdades para k = 1,...,n,, llegamos a

Fb) = F(a) = 3 (F{™) — P{™) Z (M) _ 2™ = o(f, P),

k=1

donde o(f, Pp,) es una suma de Riemann de f asociada a la particiéon P.
Por el teorema de convergencia de las sumas integrales, sabemos que

m— 00

lim o(f, Py) = /abf(t)dt.

Pasando al limite en la igualdad F(b) — F(a) = o(f, P,,) obtenemos

:/abf(t)dt

que es la férmula deseada. [ |

\

Corolario 6.29 (Férmula de cambio de variable). Sean f € C[a,b] y ¢ € C*(J), donde J es
un intervalo no trivial verificando que ¢(J) C I y que existen «, 5 € J tales que a = p(«a) y
b = (). Entonces

b B
| r@da= [ sew)wa

Demostracion

Sea F' una primitiva de f en I, que existe por el teorema fundamental del célculo. Por
la regla de la cadena, la composicién F o ¢ es una primitiva de la funcién (fop)y’ en J,
que es continua en dicho intervalo. Aplicando dos veces la regla de Barrow obtenemos

b 8
| 1@ da = F) = F@) = (Foo)(8) = (Fog)@) = [ 1(e(t) & (®)at

67

.

Obsérvese que la notacion de la férmula recuerda de forma muy cémoda el procedimiento de
cambio de variable: pensamos que la igualdad anterior se obtiene al sustituir la variable de
integracién = por una nueva variable ¢, ligada por la igualdad x = ¢(t). En la préctica se suele
decir que hemos hecho la sustitucién = ¢(t). Ademés de reemplazar f(x) por f(p(t)), también
resulta natural sustituir dz por ¢'(t) dt. Finalmente, el cambio en el intervalo de integracién se
refleja en los extremos: basta tener en cuenta que x = a equivale a t = a 'y x = b equivale a

t=4.

Corolario 6.30 (Férmula de integraciéon por partes). Sean u,v € Cl[a,b]. Entonces
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Demostracién

La funcién producto uv es una primitiva de u'v 4+ v’ en [a, b]. Aplicando la regla de
Barrow a u/'v + vu' en el intervalo [a, b] obtenemos

b
| W @) + u@)'@) de = [u@()],
Usando la linealidad de la integral en el miembro izquierdo se llega a

b b
/a o (z)v(x) do + /a u(x)v'(z) de = [u(z)v(z)],,

b
y despejando / u(z)v'(x) dx obtenemos la igualdad buscada. [ |

a

. J

6.4 Logaritmos y exponenciales

Usando los resultados principales del Calculo Diferencial e Integral podemos introducir con
comodidad nuevas funciones reales de variable real, que, junto con las funciones racionales, forman
la coleccién de funciones elementales. Nos centraremos aqui en dos familias: las relacionadas
con potencias de base y exponente reales y las funciones trigonométricas.

Siguiendo un orden que quizé no sea el mas intuitivo, pero si el mas practico, empezaremos
por la funcién logaritmo, cuya definicién es especialmente sencilla en términos de integrales. El
Teorema Fundamental del Calculo nos dara enseguida su derivada y, a partir de ella, podremos
obtener sus propiedades basicas por medio del teorema del valor medio.

La funcién ¢ — 1/t es continua en R, luego admite una funcién de area con origen en 1. Esa
integral es la que nos interesa ahora.
Definicién 6.31. Para cada z € R™ definimos
T dt
logz = —.
1t

Al ntimero log z lo llamamos logaritmo de x y a la aplicacién log: Rt — R, que a cada z > 0
hace corresponder log x, la llamamos funcion logaritmo.

Y

Proposicién 6.32. El logaritmo es la tinica funcién f € D(R™') que verifica
1
f(1)=0 y f'(r)=— paratodoxcR".
x

En particular, log es estrictamente creciente en RT.
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Demostraciéon

Por el Teorema Fundamental del Calculo tenemos log’(z) = 1/x para todo x € R y
log1 = 0. Ademas, si f es otra funcién verificando las mismas condiciones, entonces
la funcién g = f — log tiene derivada nula en R, luego es constante. Como g(1) = 0,
obtenemos g =0y f = log.

El crecimiento estricto de log se deduce del teorema del valor medio, pues log’(x) > 0
para todo x > 0. |

- J

La siguiente propiedad es la méas caracteristica del logaritmo.
Proposicién 6.33. Para todos z,y € RT se verifica

log(zy) = logz + log y.
Como consecuencias inmediatas se tiene:
(1) log(z/y) = logz — logy para todos x,y € RT.
(2) log(z™) = nlogx para todo z € RT y todo n € N.

(3) loge =1, donde e = limy,— 4o (1 + %)n

Demostracion

Usaremos la aditividad de la integral y la férmula de cambio de variable. Para x,y € RT

tenemos v gt v gt gt
ostay) = [T = [T [T
1 1 x

En la segunda integral hacemos el cambio t = xs, dt = x ds:

— = — =logy.
t 1 xS 1 S

Ty Jt Y xds Y ds
/x o
Por tanto log(zy) = log z + log y, como querfamos.
Para (1) basta escribir log x = log((z/y)y) = log(x/y) + logy y despejar.
La igualdad (2) se demuestra por induccién en n € N: el caso n = 1 es trivial y, si vale
para cierto n, entonces

log(z"™) = log(z"z) = log(z") + logz = nlogx + logz = (n + 1) log .

Para (3), usamos la continuidad del logaritmo en el punto e y su derivabilidad en 1
para escribir

log(1+ +) —logl

2) -1

log/(1) = 1.

[y

. 1 §
loge = lim nlog(1+ ) = lim ==

\

Proposicion 6.34. La funcién logaritmo diverge positivamente en +00 y negativamente en 0.
En consecuencia, su imagen es todo R y log: RT — R es biyectiva.
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Demostracién

Dado m € N, para x > €™ se tiene

logx > log(e™) = mloge = m,
luego log x — 400 cuando * — +oo. En el origen,
logz = —log(1/z) — —o0  (z — 07).

Por tanto, la imagen de log es un intervalo sin cota superior ni inferior, y necesariamente
coincide con R. [ |

. J

Definicion 6.35. La inversa del logaritmo es la funcion exponencial, que denotaremos por
exp=log™': R — R*.
Para cada z € R escribimos exp x para el inico y > 0 tal que logy = z. Equivalentemente,
exp(logy) =y VyeRT, log(expz) =2 VzxeR.
En particular, exp0 =1y expl =e.
Proposiciéon 6.36. La funcién exponencial es derivable en R y coincide con su derivada:
exp/(z) = expx >0 para todo x € R.

En particular, exp es estrictamente creciente.

Demostracion

Como log'(z) # 0 para todo z € RT, el teorema de la funcién inversa nos dice que la
inversa del log es derivable en R y ademaés

1 1
~ log'(expz) 1/expux

exp’(z) =expx >0

para todo = € R. [ |

N J

La propiedad fundamental de la exponencial es la siguiente.
Proposicion 6.37. Para todos x,y € R se verifica

exp(x + y) = expx expy.
Como consecuencias obtenemos:
(1) exp(x —y) = expx/expy para todos =,y € R.

(2) exp(nz) = (expz)™ para todo z € R y todo n € N.
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Demostracién

Fijamos y € R y consideramos la funcién

exp(z +y)
h(zx) = opr

h: R — R,

Estd claro que h € D(R) y se comprueba inmediatamente que h/(x) = 0 para todo
x € R. Por tanto h es constante y h(x) = h(0) = expy para todo z € R, lo que equivale
a exp(r +y) = expx expy.

Las consecuencias se obtienen a partir de la férmula de adicién de manera inmediata. W

- J

Proposicion 6.38. Se verifica

lim expx =0, lim expx = 4o00.
T——00 T—-+00

Demostracién

Estas propiedades pueden obtenerse directamente a partir del comportamiento asin-
tético del logaritmo, ya que la funcién exponencial es su inversa. Alternativamente,
pueden demostrarse directamente de la siguiente manera:

Como {e"},en — 400, dado K € R podemos encontrar m € N tal que e™ > K. Para
T > m se tiene
expx >expm = (expl)" =™ > K,

luego exp x — +oo cuando z — +oo. Por otra parte,

0= lim = lim exp(—z)= lim expuz,
r—+00 eXp T T—+00 T—r—00
lo que da el limite en —oo. [ |
y y =expz
Yy
y = logx
/1
x x
0 1 0

Las propiedades anteriores permiten extender la definicién de las potencias a exponentes reales.
Empezamos con una observacion sencilla: si m € N, entonces

1
logz = log(( ¥/x)™) = mlog W/x = log ¥x = —logu.
m
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Por tanto, dados a € R™ y ¢ € Q, sabemos ya que

a? = exp(log(a?)) = exp(qloga).
En el segundo miembro nada impide sustituir ¢ por un niimero real cualquiera y escribir:

Definicién 6.39. Para a € RT y b € R definimos

a® = exp(bloga).

Segin tomemos a o b como variable, obtendremos dos familias de funciones.

Definicién 6.40. Fijado a € R, la exponencial de base a es la funcién
exp,: R — RT, exp, r = a® = exp(xzloga).

Observamos que exp; x = 1 para todo = € R, por lo que el caso a = 1 carece de interés. También
se cumple
exp,r = e* =expx para todo z € R,

de modo que la exponencial de base e es la funcién exponencial por antonomasia; todas las
demas se obtienen a partir de ella.

Definicién 6.41. Fijado a € R\ {1}, la inversa de la exponencial de base a es el logaritmo en
base a, que denotamos por log,. Tenemos

a8V =y Yy e RT log,(a®) =2 VaxeR.
Para todo x > 0 vemos inmediatamente que
— elogalogax

T = a8 ? = logx = logalog, z.

Esta es la conocida como férmula de cambio de base de los logaritmos:

log, z = para todo x € RT.

loga
La férmula anterior permite deducir todas las propiedades de la funcién log, x a partir de las de
la funcién log, asi que no nos detendremos a detallarlas. Merece la pena, no obstante, sefialar la
extension de la féormula de adicién para el log,:
Proposicién 6.42. Para todo a € RT \ {1}, todo z > 0 y todo y € R se tiene:

log,(z¥) = ylog, z.

Demostracién

Es un calculo directo:

log(exp(y log ylogx
log, (¢¥) = i lofgya 27) = logga = ylog, .
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O<a<l1 a>1

y =log, x

O<axl1

Pasamos ahora a estudiar las funciones que se obtienen al considerar potencias con base variable
y exponente constante. Fijado o € R, llamamos funcién potencia de exponente a a

x— %,

entendida como una funcién definida en R*.

s 2

En algunos casos, esta funciéon no es nueva y puede ser definida en un subconjunto de
R mas grande que R™. Estos casos son:
» Si a =n €N, se trata de la restriccién a R™ de una funcién polinémica conocida;
para o = 0 es una funcién constante.
= Si @ =-n conn €N, entonces x~" = 1/z" para todo # € RT y obtenemos una
funcién racional conocida. En realidad =" = 1/2" tiene sentido también para
x € R* y podemos verla como funciéon definida en R*.
» Sia=1/qcon q €N, la identidad

2V = Yz para todo z € RT

nos dice que la potencia de exponente 1/q coincide con la funcién raiz g-ésima
(definida previamente y continua en R, e incluso en todo R cuando g es impar).

» Sia=p/qconpeZyqeN, delas propiedades anteriores se deduce que
2P/ = (Yr)?  para todo z € RY,

luego la potencia de exponente racional p/q se obtiene como composicién de
funciones conocidas.

\ J

El caso realmente nuevo aparece cuando o € R\ Q. Las propiedades bésicas de esta funcién se
deducen de las de la exponencial y el logaritmo y no merece la pena detenernos.

Definicién 6.43. Fijado o € R, la potencia de exponente « es la funcién f, : R™ — R* dada
por
fa(x) = exp(alogz) = =% para todo z € RY.

Cuando o € Q, esta funcién es la restriccién a RT de funciones polinémicas, racionales y
radicales ya conocidas.
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Estas nuevas potencias que acabamos de construir se derivan igual que las que ya conociamos.

Proposicién 6.44. Dado a € R, la potencia x + 2% es derivable en RT con (z) = az® !

Demostracion

La derivabilidad de la potencia es consecuencia de la regla de la cadena, ya que exp y
log son funciones derivables. Ademés

1

(2%)" = exp/(alogz)log’ z a = aa;a; — ozl

. J

Concluimos esta parte de propiedades del logaritmo y la exponencial probando su analiticidad.
Empezamos por la exponencial.

Proposicion 6.45. La funcion exp es analitica en R y

+o0 el
e’ = E E(w—a)” Vz,a € R.
k=0 """

Demostracion

Sabemos que exp € D(R) y exp’ = exp, luego exp € C°(R). Ademas, dado cualquier
a € R, exp™(a) = e para todo n € N, luego

n

Tufexp,al(a) = Y- S (0 —a)"
k=0 """

Por la férmula de Taylor, para cada n € N existe un ¢, entre x y a tal que

" o er(z — a)"+1

e"”—Z—(m—a)”:W.

Usando que exp es una funcién creciente, la férmula de adicién y el hecho que ¢, <
la| + |z|, se tiene

n. _a la] o]z _ \n+1
: e e“e(x —a
6172—@7@ < ( ) -0 (n— +400),
= n! (n+1)!
luego la serie de Taylor es convergente y converge a e* para todo z,a € R. |

. J

Proposicién 6.46. La funcién log es analitica en RT. Ademés, dado a € R, para todo

x € (0,2a) se verifica
< (-1t
logz = loga + Z —_—

n
n=1 na

(x —a)".
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Demostracién

Sabemos que log € D(R*) con log/(z) = L. Como log’(z) es una funcién racional cuyo
denominador nunca se anula en R, es C°°(R™), y por tanto también lo es el logaritmo.

Para empezar, tenemos que calcular las infinitas derivadas de log en un punto a € R™.
Para simplificar la tarea, consideramos en su lugar la funcién log(1 + z) y calcularemos
sus polinomios de Taylor en a = 0, para luego usar las propiedades del logaritmo.

Sea pues la funcién f : (—1,400) dada por f(z) = log(1+ ), y sea ¢(t) = f'(t) = %ﬂ’
definida para t € (—1,400). Dado n € N, de la férmula de las sumas parciales de la
serie geométrica se obtiene, para todo t > —1,

n—1 n—1
1—(=t)"
S (=F = Y (ke = S
k=0 k=0 1+t
y por tanto
1 =gk, (D
—_— = 1) . .
1+t ];)( e+ 1+t (6:3)
Tnfl[ﬂovo](t)

Hemos obtenido asi los polinomios de Taylor de orden n — 1 de ¢ en a = 0, ya que

1 (1 B “‘Q_nktk) NG

lim —— T
t—0 ¢ +1 o

y Th—1[¢, 0](x) es el tnico polinomio que cumple dicha condicion, segin el teorema del
resto de Taylor. Ahora, integramos la identidad (6.3), usando linealidad de la integral
y la regla de Barrow:

T odt

’I’LtTL

n—1
=3 (-1) k/ tkdt+/
I;)( 0 1—|—t
Szt [P,
0

P 1+t

—_

Luego
: e
log(1 k+1"” - [
og(l+ ) z:: o 14t

Lo que hemos hecho en el paso anterior es escribir el resto de Taylor R, [log(1+ ), 0](x)
en forma integral, o como resto de Cauchy. La serie

D

n>1

(_1>n+1xn

n

converge si y solo si |z| < 1, asi que debemos restringirnos a = € (—1,1]. Vamos a ver
que, si x € (—1, 1], dicho resto tiende a 0 cuando n — occ.

Caso 0 <z <1| Parate|0,z]setiene 1+t > 1, asi que

x (__1\n4m x n x n+1
/U)tdt‘g t _/ rat="— 0.
0 14+t o 1+t 0 n-+1 n—ooco
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Caso —1 <z <0| Parate[z,0]secumple|t|<|z|]<lyl4+t>1+z>0,de

modo que

Tl < 1%
< .
1+t~ 1+

Entonces,

T (1) 0 " n 0 n+1
/ ce dt‘g 7 g < 12 /dt:’x ——0.
0 14+t z 1+t 1+z J: 1+ nooo

Concluimos que, para todo x € (—1,1],

o0

lOg 1 + Z k+1$

Para obtener el desarrollo alrededor de un a € R™ cualquiera, escribimos

=a(l+u), u=2"2
a

Si z € (0,2a] entonces u € (—1,1] y, aplicando la férmula anterior a u, tenemos

logz = loga + log(1 + u)

+1 o (="t

=1 n =1 _ n

oga+ E och-nE:1 s (x —a)",

que es la identidad buscada. [ |

Como consecuencia inmediata, tomando a = 1 y £ = 2 obtenemos la suma de la serie

armoénica alternada.
= ()
log2 =log(l+1) = Z —_

n=1 n

.

Tanto la exponencial como el logaritmo como las potencias de exponente positivo son funciones
que divergen a +oo en 400, por lo que cabe preguntarse qué ocurre con la indeterminacién del

tipo [0o/o0] que producen sus cocientes. El caso de dos potencias es sencillo, pues b =
El siguiente resultado da respuesta al resto de casos.

Proposicién 6.47 (Escala de infinitos). Sea p € RT. Entonces se verifican los limites

1 P
lim —8% _, lim 2 = 0.

z—+o00 P r—+oo er

Demostracién

a—b

FEsta demostracion no se vio en clase.

Las funciones involucradas en los limites anteriores son C° en sus respectivos dominios
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.

de definicién, lo que nos permite considerar los cocientes de las derivadas tantas veces
como sea necesario.

Si derivamos el numerador y el denominador del primer limite, tenemos:

log’ x 1

En el segundo limite volvemos a encontrar una indeterminacién del tipo [0o/o0] hasta
que derivamos [p] + 1 veces.

Lo)

—k
(2#)(Lo) kl;[o(p )
oxpD(z) ~ glliree 0 (@2 +0).

El resultado que queriamos se sigue de la regla de L’Hopital. |

J

El resultado anterior se conoce como escala de infinitos: entre las funciones que divergen
positivamente en +o00, cualquier potencia x” con p > 0 domina al logaritmo, y la exponencial
e” domina a todas las potencias.

| Ejemplo

>

Problema. Calcular los limites

lim z'/* v lim x*.
T—+00 z—0+

Resolucion. Para el primero, escribimos

1
xl/m _ G‘Xp( ng) '
€T

El exponente tiende a 0 por la escala de infinitos (caso p = 1), luego

{ 1/1‘ pu— pu—
xkrfwx exp(0) = 1.
Para el segundo, usamos
z® = exp(xzlogx).
Observamos que
log
1)z’

zlogx =

Cuando x — 0%, se tiene 1/x — 400, asi que, poniendo ¢t = 1/z,

logt
zlogx = —%.

De nuevo, por la escala de infinitos (caso p = 1), logt/t — 0, luego zlogx — 0 y por
tanto
lim 2% = exp(0) = 1.

r—0t
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El criterio anterior nos permite resolver indeterminaciones del tipo [0 - oo], [0/0] y [00/00] que
involucran a las funciones que acabamos de introducir. Damos a continuacién uno muy util
para afrontar las del tipo [1°°].

Proposicién 6.48 (Criterio de equivalencia logaritmica). Sea {z,} una sucesién de ntimeros
reales positivos tal que x,, — 1 y sea {y,} cualquier sucesién de nimeros reales. Entonces:

(i) Para L € R se tiene
L

lim —1)=1L lim z9" = e”.
n—00 yn(xn ) — n—00 T €

(i) {yn(zn — 1)} - 400 <= {2¥} — +o0.

(i) {gn(an —1)} & —00 <= {az¥} —0.

Demostracion

Recordamos primero que

1
lim ngl =log/(1) = 1.

x—1 1 —

Definimos la funcién ¢ : RT — R mediante

log
) 17
o) ={z-1 77
1, z=1.

Por el limite anterior, ¢ es continua en 1, luego ¢ € C(R™) y, en particular, ¢(z,) — 1
cuando n — co. Ademds, ¢(x) # 0 para todo z € RT.
Para cada n € N tenemos la igualdad

Ynlog xy, = yn(xn - 1) So(xn)a

que es obvia si z,, # 1, y también si x,, = 1 pues entonces ambos lados son 0. De aqui se
deduce que las sucesiones {y, logz,} y {yn(z, — 1)} tienen el mismo comportamiento
cuando n — 400, ya que ©(x,) — 1y p(z,) # 0. [ |

u J

l Ejemplo

>

Problema. Calcular )

3 sinx 22
lim .
z—0 €T

Resolucion. Por la definicién de derivada,

, sinx .
lim =sin’0=1.
z—0 @

Por tanto, tenemos una indeterminacién del tipo [1°°]. Teniendo en cuenta el criterio
de equivalencia logaritmica, consideramos:

i i? (sinx _ 1) ~ Ym sinx—x.

€T z—0 aj3
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Por el teorema de Taylor, sinz = z — %3 + R3lsin, 0](z). Por tanto

. sinz—z —% + Ra[sin, 0](z) 1
lim ———— = lim . =——.
z—0 x3 z—0 3 6
Finalmente,
1
B sinx\ =2 _
lim =16,
z—0 X
Ejercicios:

(1) Probar que
im — ) —=1.
n—oo logn = k
(2) Sea f € D(R) tal que f'(z) = af(z) para todo € R, donde o € R es una
constante. Probar que

f(z) = f(0)e** para todo z € R.

(3) Probar que z¢ < e® para todo x € RT. Probar también que la anterior desigualdad
caracteriza al niimero e, es decir, si a € R verifica que 2% < a® para todo z € RT,
entonces a = e.

(4) Estudiar el comportamiento en +oo de las funciones ¢, : Rt — R definidas como
sigue, donde a € RT es una constante:

p(x)

_ log(2 + ae”)

V2 +az?

(5) Dados a, 8 € R, estudiar la convergencia de la serie de Bertrand

Z 1

=4 ne(log n)p

() = (a® +2)Y* Vo eRT.

(6) Dado a € R, estudiar la convergencia de las siguientes series:

> (log(1+1/n)”, Y (1—eVm)"

n>1 n>1
(7) Dado a € R, estudiar la derivabilidad de la funcién f : R — R definida por

f(z)=0 VzeRy, f(z) =2 Vo eRT.
8) Se considera la funcion f : e — efinida por
S dera la fi m f R R definid
flz) = 20821 v e RT\ {el.

Estudiar el comportamiento de f en 0, e, +00.

(9) Estudiar la convergencia de la sucesion

aal/n+6bl/n n
a+f ’

donde a, B €R, o+ #0ya,beRT.
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(10) Estudiar la derivabilidad de la funcién f: Ry — R dada por
f(z) =2 VxeRT, f(0)=1.

El siguiente ejercicio es extremadamente dificil y se propone como un
reto para los lectores mas valientes:

(*) Sea f:R" — RT una funcién derivable en 1 y que verifica
f(f(z) =2* VzeRT.

Probar que f es la potencia de exponente v/2 o la de exponente —v/2.

\ J

6.5 Funciones trigonométricas

Para definir de forma préactica y rigurosa las funciones trigonométricas, empezaremos por el
arco-seno, que es una funcién que aparece de manera natural al parametrizar la circunferencia
goniométrica, esto es, la circunferencia de radio 1 y centro (0,0) de R?, cuya ecuacién es

C={(zx,y) eR?: 2* +y> =1}.

Y

x=(V1—-1%t)

sin x

Para cada t € [0, 1], marcamos el dngulo z(t) del primer cuadrante que tiene como ordenada t,
esto es (V1 —t2,t). Como el radio de la circunferencia es uno, z(t) coincide con la medida del
angulo z en radianes (véase la figura).

Aunque los conceptos de curva y parametrizacion no se introducirdn hasta la asignatura de
Calculo II, podemos convencernos, al menos geométricamente, de que el arco de circunferencia
que va desde (0, 1) hasta (v/1 — t2,t) puede recorrerse usando la funcién

7 :[0,1] — R?
v(s) =(V1—s% )

El médulo del vector velocidad de dicha parametrizacién viene dado por

e 2
||7'(S)H=\/(m> +17= 1—132:\/11_732'

Por tanto, la distancia recorrida hasta s = t, que es la longitud del arco considerado, vendra

dada por
o(t) = /t ds
0 V1—s2
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Esta funcién de area serd la pieza fundamental que nos ayudara a construir todas las funciones
trigonométricas. Asi pues, olvidindonos momentédneamente de la motivacién geométrica, hacemos
la siguiente definicion.

Definicién 6.49. Para cada x € (—1,1), definimos

T dt
arcsin(z) = /
0

1—¢2

Haciendo el cambio de variable t = —s vemos sin dificultad que el arco-seno es una funcién impar.
Ademés, por el teorema fundamental del cdlculo, 7 es derivable en (—1, 1) con arcsin’(z) = \/11_7,

por lo que es estrictamente creciente. Comenzamos viendo que arcsin puede extenderse de forma
continua a los puntos —1, 1.

Definiciéon 6.50. El nimero 7 viene dado por

4 . V2 4/‘/5/2 dx
T =4arcsin — = —_—
2 0 V1-—ua?

Proposicién 6.51. Definiendo arcsin(1l) = 7/2 y arcsin(—1) = —n/2, el arco-seno es una
funcién continua en [—1,1].

Demostracion

Como arcsin es impar, basta con probar la primera identidad. Para esto, probemos
que, para todo = € [0, 1),

arcsin(x) + arcsin(v'1 — 2?) = % (6.4)

Usando una estrategia de sobra conocida, llamamos f(z) = arcsin(z) + arcsin(v/1 — z2)
para = € [0,1). Sabemos que f € DI[0,1) con

, 1 1 x
x) = — . =0.
f@ Vi—z2 J1-(1-22) V1—2a2
Por el teorema del valor medio, f es constante, luego
F(z) = f(V/2/2) = 2arcsin(v2/2) = g para todo z € [0,1).

Tomando limite cuando x — 1 en (6.4), tenemos

™
1 : _T
lim arcsin(x) 5

\ J

Para no introducir una nueva nomenclatura, seguimos llamando arcsin a la funcién que ahora
estd definida y es continua en [—1,1]. Por el teorema del valor medio arcsin es estrictamente
creciente en [—1, 1], por lo tanto es inyectiva y su imagen no es otra que | ]. Por supuesto,
el siguiente paso natural es considerar su inversa.

™

_T T
272

Definicién 6.52. Para cada y € [57, §], definimos la funcién
S(y) = arcsin™'(y),

es decir S(y) es el tnico valor en [—1,1] tal que arcsin(S(y)) = y.
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Proposicién 6.53. Definimos la funcién C': [-F, 7] = R como C(z) = /1 — S(x)%. Se tiene
que S,C € D[-F,%] con §'(z) = C(z) y C'(x) = =S(x).

Y

Noétese que hemos definido el coseno de los dngulos entre —7/2 y 7/2 mediante el teorema de
Pitagoras.

Demostracion

Como arcsin es continua e inyectiva en un intervalo, la funcién S es continua en [—-7, F].

Ademds, es derivable en (=7, 5) con

§'(x) = arcsml(s(x)) — /1 5() = Ca).

Por su parte, la funcién C(x) es continua en [, 7], lo que nos da la derivabilidad de
S en los extremos, y

oy =S@CE@)

asi que también es derivable en todo [~F, 5], ya que su derivada tiene limite en dichos
puntos. |

N J

Las funciones S y C' son lo que todos estamos pensando: las restricciones del seno y el coseno al
intervalo [—3, 5].

[N

y = arcsinx y

[
<

Il

QW

SIE]
SRR

|
wolx

‘

,

Ahora, pretendemos extender las funciones S'y C a todo R. Para esto, nos preocupamos primero
de cémo extenderlas al intervalo [—7, 7], y luego las repetiremos en cada intervalo de longitud
2.



176

Capitulo 6. Funciones integrables

Definicién 6.54. Se definen las extensiones de S y C al intervalo [—m, 7] como
x € [z,ﬂ'], S(x)=-C (:z—i-g) si xe[—ﬂ,—g],

™ .
S(m)—C’(w—2> si 5

T , T B z , .
C(LE)—S(l‘Q) si :1:6[5,77], C(x)—5<x+2> si x e[, 2],

. )

—y=sinz

— Yy =cosT

_ /T T T T

2 2
14

Proposicién 6.55. Con las definiciones anteriores, las funciones S, C' : [—m, 7] — R verifican

las siguientes propiedades:
(i) S,C € D[—m, 7] con S'(x) = C(z) y C'(x) = —S(x) para todo z € [—7, 7,

(ii) S(x)% + C(x)? =1 para todo z € [—7, 7],

(iii) S es impar y C es par.

Demostracion

La demostracién de estas propiedades se sigue de calculos elementales.

Lo demostramos para S, ya que para C es analogo. Por el caracter local de
s s
2 Y 2

(i)
la derivabilidad, S es derivable en todos los puntos de [—m, 7] excepto quizd —

o (5)-e(5)

s’ (g+) = ' (0) = —S(0) = 0.

Estudiamos las derivadas laterales en dichos puntos:

g (—”—) — _C'(0) = S(0) = 0,

5(3)-o(p)-»

Como las derivadas laterales existen y coinciden, entonces S € D|—m, 7.

Para x € [, 5] se sigue de la definicion de C(x). Para = € [J, 7| tenemos

(ii)

S(z)* + C(z)? :C<:r— 72r>2+5 (1‘— g>2 =1,

y analogamente para x € [—m, —5].

™

| por ser inversa de la funcién impar arcsin.

Para verlo, tomamos z € [-5,§

y € [—1,1]. Entonces
S(—z) =

Por tanto, C' es par en [—73, 5], ya que

1 - S(—2)? = /1 - (~S())? = C(a).

(iii)| La funcién S(z) es impar en [~3, 5
|, que podemos escribir como x = arcsiny para algin

S(—arcsiny) = S(arcsin(—y)) = —y = —S(z).

=

C(—x) =
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Ahora, si z € [§, 7], entonces

S(—x)=-C (—x—i— 72T> =-C <:c - W) = —5(x).
€l—m/2,0]
Derivando esta identidad tenemos la paridad de la funciéon C':

S(—z)=-S(z) = -C(—x)=-C(x).
|

J

N

Definiciéon 6.56. Se definen el seno y el coseno como las funciones sin,cos : R — R que
extienden a S y C por periodicidad 27, esto es,

sinz = S(x — 2k,7), cosz = C(x —2k,7),
donde k, € Z es el tnico entero tal que (2k, — 1) < x < (2k, + 1)7.

Proposicién 6.57. Las funciones sin y cos son derivables en R. Consecuentemente, son de
clase C*°(R). Ademés, verifican las propiedades de la proposicién 6.55 en todo R.

Demostracion

Sea B = {(2k + 1)7 : k € Z}. Por construccién, sin y cos son derivables en R\ B
y ademads verifican las propiedades (i) y (éii) listadas en la proposicién 6.55 en
todo R. Demostraremos que sin y cos son derivables en —7 y 7 con sin’z = cosz y

cos' z = —sin’ z, lo que nos daré la derivabilidad en todo R junto a la propiedad (i)
completa.
, . o , o I
I_l)l{r}r+ sin'(x) = x_131_r71F+ C(z) = cos(—m)
lim sin’(z) = lim S'(z+27)= lim C(x) = C(w) = C(—m) = cos(—).
T——T T——T T
lim sin’(z) = lim C(z) = cos(7).
lim sin’(z) = lim S'(z —27) = lim C(z) = C(—7) = C(7) = cos(7).
=t 7t z——mt

De igual manera,

lim cos'(z) = lim —S(x) = —sin(—n) = sin(7) =0
z——mt z——7t
lim cos'(z) = lim C'(z+27r)= lim —S(z) = -S(7) = 0.
T——T T——T T—T
lim cos'(z) = lim —S(z) = —sin(7) = 0.
T—T T—T
lim cos'(z) = lim C'(z —27) = lim —S(x) = —S(—n) = sin(7) = 0.
z—7t z—7t r——qt

\ J

Probamos a continuacién una propiedad fundamental de las funciones seno y coseno, que son las
correspondientes férmulas de adicién. Como consecuencia, encontramos una forma muy practica
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de derivarlas.

Proposiciéon 6.58. Para cualesquiera x,y € R se tiene:

sen(z + y) = senx cosy + cosx seny, cos(x + y) = cosx cosy — senx seny.

Como consecuencia inmediata se tiene

Demostracion

\

™ . ™ /
Sen(x—|—2> = COoOSx = sIn x, Ccos <£L'+2) = — senx = CoS I.

Fijado y € R, consideramos las funciones f,g : R — R definidas por
f(z) = sen(z+y)—sen x cos y—cos z sen y, g(x) = cos(x+y)—cos x cos y+sen z seny

para todo = € R. Queremos ver que f y g son identicamente nulas.
Como f,g € D(R), calculamos sus derivadas:

f'(z) = cos(x +y) — coswcosy +senxseny = g(x),

g (x) = —sen(x +y) + senzcosy + coszseny = — f(x)

para todo = € R.
Definimos ahora h : R — R por

h(z) = f(z)? + g(x)? para todo = € R.
Entonces h € D(R) y, usando las expresiones anteriores de f’ y ¢, tenemos
W) = 20 (o) f'(2) + 20(2)g/ () = 2/ (2)g(x) — 29(x)f(x) =0 para todo z € R
Luego h es constante en R. Como

f(0) =seny —sen0cosy — cosOseny = seny — seny = 0,
g(0) = cosy — cos0cosy + senOseny = cosy — cosy = 0,
obtenemos h(0) = 0 y, por tanto, h(x) = 0 para todo = € R.

De f(x)% + g(x)? = 0 se deduce necesariamente f(z) = g(z) = 0 para todo x € R. Asi,
se verifican las igualdades del enunciado. |

J

La proposicion anterior nos da una férmula directa para calcular todas las derivadas de las

funciones seno y coseno en un punto dado. Para todo k € NU {0},

sen™ () = sen(m + %T), cos® () = cos (m + %T) Va € R.

Teorema 6.59. sin,cos € C“(R). Ademds, para cualesquiera a,z € R se tiene

> sen(a + k) > cos(a+ &)
senx:];]TQ(xfa)k, cosx:kz_%TQ(xfa)k.

En particular, tomando a = 0, para todo = € R se verifica

senzx = f: 7(_1)n 2l cosT = i (1" 2"
n=0 (27”L + 1)' n=0
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Demostraciéon

FEsta demostracion no se vio en clase.

Fijemos a,z € R con a # x y un n € NU{0}. Aplicando la fé6rmula de Taylor con resto
de Lagrange a la funcién sen en torno a a, obtenemos un punto ¢, comprendido entre
a y x tal que

" sen(a + ) , sen(cp + ("+1)7r)
senx—zi(x—a) = 2 Lz —a)"th
| |
= k! (n+1)!
Como [sen(z)| < 1 en R, se tiene
tsen(at B Ll e —ap!
Senx—kz::oT(x—a) SW—)()

El razonamiento para cos es idéntico. Tomando ahora a = 0 y usando que

sen(k—w) = {0’ k par, cos(kj> - {(1)n’ k=2n,

2 (=1)™, impar, 2 0, k impar,

las series se simplifican y obtenemos

— (=D" o — (=1)" ,
senxzzm$”+, cosaf;:Z ",
o ! !

. J

Concluimos esta seccion introduciendo la funcién tangente y sus propiedades béasicas. Para
facilitar el procedimiento, comenzamos identificando los ceros de la funcién coseno, para lo cual
basta con identificar los ceros que tiene en su intervalo fundamental: [—7, 7].

Si z € (0,7), entonces cos’ x = —sinz < 0, luego cos es una funcién estrictamente creciente en
[0, 7], y por tanto es inyectiva. Como cos0 = 1y cos7 = —1, concluimos que cos |jg -] = [~1, 1].
Definicién 6.60. Definimos la funcién arco-coseno como arccos : [—1,1] — [0, 7] dada por

arc cos(y) = cos |[B717r] (y) Vye[-1,1].

Por el teorema de derivacién de la funcién inversa, arccos € D(—1,1) con

1 1 -1
/
arc cos = = = ,
) cos |/[0,7r] (arccos(y))  —sin |’[07ﬂ (arccos(y)) 1—19y2

donde hemos usado que sin z = [sin z| = v/1 — cos? z para todo z € [0, 7].
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7T 4+ arccosx

e
8
8

-7 \r -1 0 1
-1+

Como el coseno es una funcién par y es inyectiva en [0, 7], dado y € [—1, 1], las soluciones a la
ecuacién cosx = y en [—m, 7| son exactamente dos: © = +arccosy. Por tanto

Cy={xeR:cosx =y} ={tarccosy+ 2km : k € Z}.

En particular, Co = {5 + kn : k € Z}.
Definicién 6.61. La tangente es la funciéon tg : R\ Cy — R dada por

sinz
tgx = Vx € R\ Cp.
CcoS T
r=1
Yy
sin &
tan x
T

Por el teorema de Thales, la tangente determina la altura a la que la recta vectorial que
determina un angulo = en la circunferencia unidad corta a la recta vertical = = 1.

Se comprueba sin dificultad que la tg es m—periddica, esto es, tg(x + km) = tg(z) para todo
x € Dom(tg) y todo k € Z). Ademads, tg es derivable en todo su dominio con derivada
tg'(z) =1+ tg(z)>.

Si bien la periodicidad de la tangente impide que sea inyectiva, podemos pensar en la funcién

T = 1g(_r/2,x/2)- Por el cardcter local de la derivabilidad, 7 es derivable en (5", §) con derivada

() =1+ T(ZE)2 Vo € (_;T, 72r> .
Ademas,

T
tgx — 400 (l’—)g) y tgx— —o00 (x——= ),
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por tanto, la imagen de 7 es todo R. Podemos considerar por tanto la funcién inversa 7~
que llamamos arcotangente: arctg : R — (5, §).
Gracias a los teoremas de la funcién inversa, sabemos que arctg es una funcién estrictamente

creciente y derivable, con derivada
1 1
= Vy € R.
1+ Y

T'(arctg(y)) 1+ r(arctg(y))?

arctg’(y) =

Ejercicios:
(1) Calcular la imagen de la funcién f: R* — R definida por
Vo € R*.

f(z) = arctg(log [x])

(2) Sea f:R\ {1} — R dada por
f(m)zarctg(li_i> Vr e R\ {1}.

Estudiar el comportamiento de f en 1, 400 y —oo. Calcular su imagen

(3) Probar que, si a,b € R verifican ab < 1, entonces

b
arctga + arctgb = arctg<1a+ b) .
—a

1+(z—1)2 tot
ACBY 4t Vz e RY.

(4) Calcular la imagen de la funcién F : Rt — R definida por
Lo

F(x) =
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(5) Probar que existe una unica funcién f : R — R que verifica

f(z) +exp(f(x)) =arctg(f(x)) +x Vo € R.
Probar también que f € D(R) y calcular f/(1).

(6) Probar que la funcién arco—tangente es uniformemente continua, pero su inversa
no lo es.

(7) Probar que, para todo x € (0,7/2), se tiene

2x
— <senzx <z < tgx.
T

(8) Dado x € R, estudiar la convergencia de las sucesiones {sen(nz)} y {cos(nzx)}.

(9) Estudiar la convergencia de las siguientes sucesiones:

(reen(Gtpy) ) teompa, {0

(10) Dado « € R, estudiar la convergencia de las siguientes series:

cos(no a — e /Y arc n)\“
3 SO 5 (sen(1/m)" Z(“ ) arc tg(1/ >>.

2’
= n(logn) = = logn

(11) Sea f:R — R definida por

f(z) =senz sen(i) Vz € R, f(0) =0.

Estudiar la continuidad y derivabilidad de f, asi como su comportamiento en +oo
y —00.
(12) Sea a € Ry f: Rj — R definida por

X

flx) =z“ cos(1> Vr € RT, f(0)=0.

Estudiar la continuidad y derivabilidad de f, asi como la continuidad de su derivada.
(13) Sea f:(0,7/2) — R definida por

f@:):( ! )Sm W € (0,7/2).

tgx
(Puede extenderse f para obtener una funcién continua en [0,7/2]?
(14) Sea f:(0,7/2) — R definida por
f(x):(l—i-sena:)tg%w Vo e (0,7/2).

Estudiar la continuidad de f y su comportamiento en 0 y en /2.
(15) Sean J = [~1/v/2,1/v/2] y g : J — [-7/2,7/2] definida por

g(z) = arcsen(2zV'1 — z2) Vo e J.

Probar que g es biyectiva, continua en J y estrictamente creciente. Dar una
expresion explicita para la funcién inversa de g.

(16) Dado a € RT, calcular la imagen de la funcién G : [0,a] — R definida por

G(x):/_i Va? —t*dt Yz €l0,al.
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6.6 Integrales impropias de Riemann

Las nociones de area e integral que hemos desarrollado en este capitulo son en realidad bastante
restrictivas, ya que se limitan a considerar funciones acotadas e intervalos cerrados y acotados.
En muchas situaciones naturales aparecen funciones no acotadas o definidas en intervalos no
acotados para las que puede definirse una nocién de area mediante un proceso de paso al limite.
Empezamos con un par de ejemplos sencillos que motivan la extension de la definicién de
integral que haremos.

La funcién f(x) = ﬁ no estd acotada en el intervalo (0, 1], pero admite la primitiva F'(z) = 2y/x

en [0, 1]. Por tanto, fijado un a > 0 se tiene

1
/a S5 dr="F(1)~Fla)=2-2Va

Por tanto 1

1
11 —dr =1 2 —2vt) = 2.
Jm, | —=de = lim (2-2v3)

Sea ahora a > 0. Para todo b > 0 se tiene

b 1
/ e dr==—(1- efab).
0

«
Luego
b 1
lim e dx = —.
b—+4o00 Jo «

En este caso la funcién es acotada, pero el intervalo de integracion no lo es.

4,,
377 |
i 1
2” | —_
- ) G
R .
I I | T T
L1 I [N
G/—>0+ 1 0 b—)+oo

Estos ejemplos muestran los dos tipos bésicos de integrales impropias de Riemann que conside-
raremos; las que tienen un integrando o un intervalo de integracién no acotado.

Definicién 6.62. Sea f : [a,b) — R una funcién continua, donde suponemos que a € R y que
b es un ntimero real mayor que a o bien b = +o0o. Definimos la integral impropia de Riemann de
f en [a,b) como el limite

b t
/a fl@)do = lim / f (@) da,

siempre que dicho limite exista y sea un nimero real. En ese caso se dice que la integral de f es
convergente en [a,b). En caso contrario diremos que la integral es divergente.

Anélogamente definimos la integral impropia en un intervalo (a, b].

Definicién 6.63. Sea f : (a,b] — R una funcién continua, donde suponemos que b € R y que
a es un numero real menor que b o bien a = —oo. Definimos la integral impropia de Riemann
de f en (a,b] como el limite

b b
/f(:n)dm: lim [ f(z)dz,

t—at Jt
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siempre que dicho limite exista y sea un niimero real. En ese caso se dice que la integral de f es
convergente en (a, b|.

Cuando f tiene problemas en ambos extremos del intervalo, se define la integral impropia
separando en un punto interior.

Definicién 6.64. Sea f : (a,b) — R una funcién continua, donde —oo < a < b < 400, y
tomamos un ¢ € R con a < ¢ < b cualquiera. Se dice que la integral impropia de f en (a,b) es
convergente cuando las integrales impropias de f en (a,c] y en [, b) son convergentes, en cuyo
caso se define

/abf(a:)d:c: /acf(x)dx—i—/cbf(a:)dm.

Como aplicacion directa de la regla de Barrow tenemos la siguiente relacion entre integrabilidad
Riemann y convergencia de la integral impropia de funciones definidas en intervalos acotados.

Proposicién 6.65. Sea f : [a,b] — R una funcién continua. Entonces la integral impropia de
f en (a,b) converge a f:f(a:)dx

e N

Nota: Como para todo ¢’ € (c,b) se verifica la igualdad

[ rwa= [ swas [ o

se deduce que la convergencia de la integral de f en [c,b) equivale a la convergencia
de la integral de f en [¢/,b). Es decir, el punto interior ¢ usado en la definicién de la
integral en (a,b) es irrelevante.

\ J

| Ejemplo

s N

Sea « # 1. Para todo t > 1 se tiene

t]_ tl—a 1
—d .
1 ¢ l-a 11—«

De aqui deducimos, para la integral impropia en [1, +00),

1
oo 1 t 1 , sia>1,
/ —dx = lim —de=Ja-1
1 ¢ t=+o00 J1 ¢ .
~+00, sia < 1.

Analogamente, para la integral impropia en (0, 1] obtenemos

1

19 19 , Sia<l1,
/—adx: lim+ —dr = l -«

T 0 x .
0 0T ~+00, sia > 1.

N

Naturalmente, no siempre dispondremos de una primitiva expresable mediante funciones ele-
mentales, o bien su calculo puede resultar excesivamente laborioso. Si lo inico que nos interesa
es saber si una integral impropia es convergente o divergente, podemos recurrir a varios criterios
que permiten decidirlo por comparacién con otras funciones cuyo comportamiento si conocemos.
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Consideraremos integrales definidas en intervalos del tipo [a,b) donde a < b < 4o00. Resultados
analogos valen para intervalos del tipo (a,b], donde —oco < a < b.

El caso en que la funcién integrando es positiva es particularmente sencillo, ya que si f > 0
entonces la funcién ¢ — | (f f(x)dx creciente, y por tanto solo converger o divergir a 400 cuando
t—b".

Proposicién 6.66. Sea f una funcién continua y no negativa en [a, b). Entonces la integral de
f en [a,b) es convergente si, y sélo si, la funcién de drea

estd mayorada en [a,b), en cuyo caso

b
/ f(x)de = sup {F(t) : t € [a,b)}.
En caso contrario la integral de f en [a,b) diverge a +oc0.

Como consecuencia de este hecho tenemos varios criterios de comparacién, analogos a los que
demostramos para series de términos negativos.

Proposicién 6.67 (Criterio de comparacién). Sean f,g € C|a,b) satisfaciendo
0< f(zx) <g(z) Vx€la,b).
= Si ffg(ac)dx es convergente, entonces ff f(z)dz es convergente.

» Si f(ff(:c)dx es divergente, entonces ff f(z)dz es divergente.

| Ejemplo

s N

Problema. Estudiar el caricter de la integral impropia f0+°° e~ dx.

. s o 2 .
Resolucion. La primitiva de x — e~ no puede expresarse usando las funciones

vistas hasta ahora, asi que aplicaremos el criterio visto anteriormente. En primer lugar,
descomponemos la integral para poder estimar cada parte por separado:

+oo 2 1 2 +0oo 2
/ e ” d:v:/ e ” dx—i—/ e " dx.
0 0 1

7* 65 continua en [0, 1], luego es integrable en dicho intervalo.

La funcién e~
Sea ahora = > 1, entonces 22 > z, de donde
e = e ¥ <e”.
Sabemos que
400 1
e tdt = [—eft] oo -,
) 1

por lo que la integral de e=* en [1,4+00) es convergente. Como 0 < e < e para
. . . 22 .
todo x > 1, el criterio de comparacion nos dice que f0+°° e~ " dx también es convergente.
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22

Concluimos que la integral de e converge en [0, 4+00).

Nota: Usando herramientas de la asignatura de Céalculo II podra verse que el valor de
la integral anterior es /7 /2.

. J

Proposiciéon 6.68 (Criterio de comparacién por paso al limite). Sean f y g continuas y
positivas en [a, b) con g(z) # 0 para todo z € [a,b). Supongamos que existe L € R tal que

f(x)

Entonces las integrales de f y ¢ en [a,b) o bien ambas convergen, o bien ambas divergen
positivamente. [

| Ejemplo

e N

Problema. Estudiar el caricter de la integral

too

0o VaZ+l
Resolucién. En cada intervalo [0, M], con M > 0, la funcién

1

0=

es continua, luego integrable. Fijamos M suficientemente grande y escribimos
/ ‘oo de / M- dy N / too dx
o VaZ+1 Jo Va4l Ju Va4l
El primer sumando es una integral ordinaria. Para el segundo aplicamos el criterio de
comparacién por paso al limite con g(z) = 1/x. Observamos que

S~

i 1) —
T—r—+00 g(x) Tr——+00

NGES U B

1
2

1 = lim
z

Ademaés,

+oo
/ Ci—x: [logaz]x/[w%—i-oo,
M

es decir, la integral de g diverge positivamente. Por el criterio limite de comparacion
con funciones positivas, se deduce que

too (g
[,
M 2+ 1

y, €en consecuencia,

too (g
/ Y i
0 241
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Definicion 6.69. Se dice que la integral impropia de f en un cierto intervalo es absolutamente

convergente cuando la integral impropia de |f| es convergente en dicho intervalo.

Naturalmente, los criterios de convergencia anteriores, formulados para integrales de funciones
positivas, pueden usarse para estudiar la convergencia absoluta de la integral de cualquier

funcién.

Teorema 6.70. Si la integral impropia de f es absolutamente convergente en [a, b), entonces

la integral impropia de f en [a,b) también es convergente.

Demostracion

FEsta demostracion no se vio en clase.

Denotemos

Gl) = [ Ifwldt,  F@)= [ s

para x € [a,b). Sea {x,} C [a,b) una sucesién tal que x, < b para todon € Ny
{z,} — b. Como f es absolutamente integrable, G(z,,) es convergente, luego es de
Cauchy. Nuestro objetivo serd probar que {F'(z,)} también es de Cauchy.

Sean € > 0 y ng € N tal que, para m,n > ng se tiene |G(x,) — G(zn)| < . Entonces,

F(xm)—F(xn):/:m f(t)dt—/jn £(t) dt:/;m F(t) dt.

Usando las propiedades de la integral:

’F($m) - F(l‘nﬂ <

[ sl dt\ = G(m) — Glan)| < <.

Hemos probado que F(z,) es de Cauchy, y por tanto convergente. |

u

| Ejemplo

La integral impropia de la funcién f : Rar — R dada por

) =" wes0, f0)=1,

converge en [0, +00) pero no es absolutamente convergente.

Resolucién.

Empezamos estudiando su convergencia. Tomamos R > 1 y escribimos

Rging Lginz Rging
dr = + dx.
0 x 0 x 1 Zz

Como f es continua en [0, 1], nos ocupamos de la segunda integral. Integramos por
partes tomando

1 1
u=—, dv = senzx dz, = du=——dx, v=—cosz.
x x
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Entonces

Rgeng cos R R cosx
/ der = — +cosl—/ 5 dx.
1 T R 1 x

Observamos ahora que

‘cosx‘_i Vo> 1,

2 2

Por el criterio de comparacién,

T dy; T cosx
— converge — 5— dx  converge absolutamente.
1 x 1 €

Aqui se hace evidente la importancia de haber partido la integral en z = 1, ya que la
integral anterior no converge en (0,+00), y no podriamos comparar directamente en
dicho intervalo.

Tomando limite cuando R — 400 se tiene
+00 sin ¢ Lsin z +00 cosx
/ dx:/ dm+cosl—/ dzx,
0 x 0 X

1 z?
luego es convergente.

Estudiamos ahora la convergencia absoluta

+oo
/ | sen x| .
0 x

Para cada n € N consideramos el intervalo [(n — 1)7, nx]. Usando la periodicidad 7 de
la funcién |sin x| tenemos:

/ ‘Senx’dx>— lsenx|dx:—/ |senz|dr = —.
( nm Jo nm

n—1)m €T nm J(n—1)rw

Sumando desde n = 1 hasta n = N, obtenemos

/N7r|sen1:’dx:§:/mr |senl"dng§:l'
0 n=1" (=17 & n=1 n

x x
o0
Sabemos que la serie arménica Z — diverge, luego
n=1
oo | sen z
dx — 4o00.
0 x

¥V N N N e s oy o,
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El método anterior puede aplicarse en el estudio del comportamiento asintético de sucesiones
tales como log(n!).

| Ejemplo

be

Se verifica

log(n!)
lim —————— =
n—+oo nlogn —n

Resolucidon. Sea n € N. Nuestra primera tarea es encontrar una estima inferior y otra
superior para logn! usando areas.

Como log x es creciente, para cada k = 1,...,ny todo x € [k—1, k] se tiene logz < log k.
Integrando en [k — 1, k]:

k
/ logz dr < logk.
k—1

Sumando de k£ =1 a n,

n n k n
/ logx dx = Z/ logz dx < Z log k = log(n!).
0 k=17F1 k=1

La integral de la izquierda es impropia, pero sabemos que zlogx — x es una primitiva
de logz en RT, de modo que

/ logzdr = lim log:xda:—nlogn—n

t—0t

En consecuencia,
nlogn —n <log(n!). (1)

Por otra parte, para cada k = 1,...,n y todo x € [k, k + 1] se verifica log k < logz.
Integrando en [k, k + 1]:

k+1
logk < / log z dz.
k

Sumando de k£ =1 a n,
ntl n+1
log(n!) Zlogk</ logzdr = [zlogz —z], "~ = (n+1)log(n +1) — n.

Por tanto
log(n!) < (n+1)log(n+ 1) — n. (2)

De (1) y (2) obtenemos, para todo n > 1,

nlogn —n < log(n!) < (n+1)log(n+1) —n.

Dividimos toda la desigualdad por nlogn — n, que es positivo para n > 2:

log(n!) - (n+1)log(n+1) —n
~ nlogn—n — nlogn —n '

Para ver que el extremo derecho tiende también a 1 cuando n — +o00 basta con aplicar
la regla de L’Hopital dos veces al limite funcional

1)1 1) —
(e Dloa(r + 1)
z—+400 rlogr —x
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Ejercicio: Usar el ejemplo anterior para calcular

Ejercicio: Sea o € (0,1). Demostrar que

n—+oo n

lim 1 log (Lannj> = —aloga — (1 — a)log(l — a).

: . . lon]
Sugerencia: Ver primero que lim —— =«
n—-+oo n

\ J

Si no estaba suficientemente clara la estrecha relacion entre series e integrales, el siguiente
resultado establece una equivalencia entre la convergencia de ciertas series de niimeros positivos
con la convergencia de una integral impropia.

Teorema 6.71 (Criterio de la integral para series). Sea ng € N. Supongamos que f € C[ng, +00)
es no negativa y decreciente. Entonces
+oo

Z f(n) converge < / f(x)dz converge.

n>ng 0

Demostracion

Como f es decreciente, para cada intervalo (n,n + 1) con n > ng se tiene

n+1
f= g+ =n) = [ @ de > St () -n) = f+ ).

n

area del rectdngulo de altura f(n)

Sumando estas desigualdades desde n = ng hasta n = m — 1, obtenemos

m—1 m

Zf(n)Z/kmf(fv)d:vz S fn)

n=~k n=k+1

para todo m > ng. Por tanto, las sumas parciales de la 3°, -, f(m) estdn mayoradas
si, y solo si, lo estd la sucesién [" f(x)dx. [ ]

N J

| Ejemplo

>

Problema. Estudiar la convergencia de la serie

D

n>2

1
nlogn’
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Resolucion. Buscamos aplicar el criterio de la integral. Sea

1
f:[2,400) = R, f(ﬂf)zmlogx-
Claramente f € D([2,4+00)) y
, 1+logx
—_ oY < > 2.
f ($> 1’2(10g$)2 <0 vz -

Por tanto, f es decreciente en [2,400).

Estudiamos ahora la integral impropia mediante el cambio de variable ©v = logx,

1
du = — dx, obteniendo
x

/+Oo du :/+mw:[logu]+m—>+oo.
2 1

xlogx 0g2 U

La integral diverge a +o0, y como f es positiva, continua y decreciente en [2, +00), el
criterio de la integral nos dice que la serie

2.

n>2

1
nlogn

es divergente.

Noétese que esta serie puede ser estudiada de forma més directa usando el criterio de
condensacion.

.

Anexos del capitulo: algunos métodos de calculo de primitivas

Primitivas de funciones elementales

Recordamos primero un pequeno formulario de primitivas que usaremos como referencia. Todas
las identidades siguientes pueden comprobarse derivando el término de la derecha. En todas
ellas, C' € R denota una constante arbitraria.

l,a—i—l
/Oda::C’, /xo‘dz: +C sia# -1,
a+1
1 X
/—dx:10g|a:]+C, /axdx: +C (a>0,a#1),
T loga
/sinxdx: —cosz + C, /cos:rdw:sinx—i—C,
1 1 1
/ 5 der =tgx+ C, /,2 dr = ——+C,
COs* x sin“ x tgx

dr = arcsinx + C.

! dx = arct C L
[rrmte=mewrse [
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1. Integrales por sustitucion o cambio de variable
Sea v: [@,b] — [a,b] una funcién derivable y sea f: [a,b] — R continua. Entonces

[ s = " o
a ¥(a)

En términos de integrales indefinidas,

[ @@ @ de= [f@a. 1=,

Obsérvese que la primera identidad es una igualdad entre nimeros reales, por lo que no hay
que deshacer el cambio de variable ¢t = ¢(x); dicha informacién va implicita en el cambio de
los limites de integracién. En cambio, la segunda identidad es una entre funciones, por lo que
deben estar expresadas en una misma variable, y por tanto debemos sustituir t = ¢(z) al final
del célculo.

| Ejemplo

>

Problema. Calcular 2
iy
/ sen® z cos x dz.
0

Resolucién. Escribimos

derivada de senx
/2 3 ——
/ sen” x cosx dx
0 v

funcién de senx

Tomamos t = sen z, de modo que dt = cosz dx y, cuando x = 0, t = 0, mientras que
cuando x = 7/2, t = 1. Entonces

/2 1 471
/ senga:coswda::/ 3 dt = t— :1.
0 0 4 0 4

. J

l Ejemplo

>

Problema. Calcular una primitiva de la funcién tgz.
Resolucion. Partimos de

dt

——
sen x —senzdr
/tga:dx:/ dx:—/i.
coS T COS T
~——
t
Tomando t = cosx se tiene dt = — senx dx y, por tanto,

1
/tgxdx:—/;dt:—log]t]+C:—log\cosx|+C.

Hemos deshecho el cambio t = cos x para volver a la variable x, que es en la que estaba
planteado el problema.
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2. Integracién por partes

Sean f,g: [a,b] — R funciones derivables. Entonces
b , b b ,
[ $@) ¢ @) o= [f@g@), - [ £ gl) do.
ST e
Para la integral indefinida, se tiene la férmula analoga
[ #a)d @iz = f@)g(a) - [ £ @glw)ds

Esta técnica es especialmente ttil cuando queremos integrar un producto en el que un factor es
facil de derivar y el otro es facil de integrar.

| Ejemplo

s ~

Problema. Calcular una primitiva de z log .

Resolucion. Elegimos

U = logx, dv =z dzx.
~—~ ~—~
dificil de integrar facil de integrar

1 2
Entonces du = —dx y v = 2 de modo que
x

2

1
/xlogmdfc:logaz r —/ S
—— 2

x 2
M =~
v du v
1 1 1 1
= §x2log:1: ~3 /xdm = ixQIng — ZIQ +C.
| Ejemplo
Problema. Calcular )
/ log z dz.
1

1
Resolucion. Tomamos v = logx, dv = dx; entonces du = —dx y v = x. Aplicando
x

integracién por partes en [1, 2]:

2 2
2 1
/1 logx dx = logm\x/]l—/l - \a;/da:
M v <~ v
du

2
= [xlog:c]f —/ ldxr =2log2 — 1.
1

\ J

En ocasiones, al aplicar integracion por partes sucesivamente entramos en un bucle que termina
por volver al punto de partida. Ejemplificamos a continuacion un método que permite resolver
algunos de estos casos.
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| Ejemplo

s N

Problema. Calcular una primitiva de e™* sen x.

Resolucion. Sea
I = /e_”" senz dz.

Integramos por partes tomando u = e™* y dv = senx dx. Entonces du = —e % dx y
V= —COoST,y

I=—e"cosx— /e*a’ coszdr.
Denotemos

J = /e_gccosxdx.

Volvemos a integrar por partes en J repitiendo la eleccién de u y v que hemos hecho
en el paso anterior (si no, terminaremos por deshacer la integracién por partes y llegar
a 0 = 0). Tomamos por tanto u = e~ %, dv = cosz dz; asi du = —e *dx y v =senz, y

J=e"senx+ I.
Sustituyendo en la expresién de I,
I=—e%cosx— (e “senz+1),

por lo que

1
2] = —e (cosx +senx), I= —ge_z(cosm +senz) + C.

.

3. Integracion de funciones racionales

Nos ocupamos ahora del calculo de primitivas de funciones racionales, esto es, integrales de la

forma / ggg "

donde P, ) son polinomios. En primer lugar nos limitaremos al caso en que deg P < deg@Q < 2.
Si deg P > deg @), empezamos haciendo la divisién de polinomios para escribir el integrando
como suma de un polinomio y una fracciéon propia.

3.i Caso deg@ =1

Sean a,b,c € R con b # 0. Entonces

dt
=~
bdx

[Py
brte " T brte
t

a (1 a a

3.ii Caso deg@ =2 y @) tiene dos raices simples
Si r1, 79 son las raices reales de @), buscamos constantes A, B € R tales que
P(x) A B

Q) x—ry x—19
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| Ejemplo

s N

Problema. Calcular
r—1

dx.
12217
Resolucién. Las raices de 422 — 1 son r; = 1/2 y 1o = —1/2. Buscamos A, B € R
tales que
r—1 A B
= -+

422 -1 z—-1 a+3

Equivalente a

1 1 A-B
x—le(x+§)+B(x—§):(A+B)x+ .
Comparando coeficientes,
A-B
A+B=1, =—1.
2
, . 1 3
De aqui se obtiene A = —3’ B= 3’ y por tanto
x—1 1 1 3 1
21 8,173, 1
Integrando,
x—1 1 3
mdx: 8 %d —|—8/ :—flog]x—2]+ log|m—|—2]—|—C.

.

3.iii Caso () con una raiz doble: integrales log—potencia

Si Q(z) tiene una raiz doble 7, el camino més rapido suele ser la sustitucién ¢t = z — r.

| Ejemplo

be

Problema. Calcular
J———
242 +1

Resolucién. Observamos que 2 + 2z + 1 = (z + 1)? tiene una rafz doble r = —1.
Tomamos t = z + 1, de modo que dt = dzx y

x t—-1 1 1
212 +1 2t 2

x 11 1
/x2+2x+1dx_/(¥_?2>dt_/¥dt_

1 1
= log |t — 4+ C =log(1 — 4+ C.
0gH~|—t—|— og( +x)+1+x—|—

Asi,
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Alternativamente, podriamos buscar una descomposicién en fracciones simples de la forma

| Ejemplo

e

Problema. Calcular la integral

1 T
T g
/0 (x+r12™

Resolucién. Buscamos A, B € R tales que

x B A n B
(z+1)2 T+ 1 (x+1)2
N—— ———

término logaritmico  t¢rmino potencia

Esto equivale a
r=A(x+1)+B Vz € R.

Evaluando en z = 0 y * = —1 obtenemos el sistema
0=A+B,
-1 =B,

Por tanto,

/Ol(gc+$1)2d$:/01 (x—li-l - (:cin?)dx

1 1 41
= [log(:c+ 1)}0-1- [1‘4- 1}0

1 1
=log2+-—1=log2— —.
og +2 og 5

\ J

Ejemplo. Célculo de una integral definida usando una descomposicién en fracciones simples:

Ly
——dx.
/0 (x+1)2 v

Buscamos A, B € R tales que

T B A n B
(z+1)2 z+ 1 (x+1)2
—— \ ,

término logaritmico  t¢rmino potencia

Equivalente a
r=Ax+1)+B Vz € R,

y evaluando en x = 0 y x = —1 obtenemos

0=A+B,
~-1= B,
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Por tanto

/(Jl(:r:+xl)2d$:/ol (xil B (:cjl)?)dx

1 1 1
- [log(:p—I—l)}O—I— [x—i- 1}0

1 1
=log2+—-—1=1log2 — —.
og +2 og 5

3.iv Caso () sin raices reales: integrales del tipo log—arctg

Supongamos que Q(x) es un polinomio de grado 2 sin raices reales y que el numerador tiene
grado 1. El objetivo es forzar que en el numerador aparezca la derivada de @, para obtener un
término logaritmico, y tratar el resto como una integral inmediata de la arctangente.

Caso «mas general».

(No cubrimos todos los casos posibles, pero si los més factibles de tratar a mano.)

Supongamos que ) y P son polinomios y que @ factoriza de la forma

coeficiente lider

Q)=  “a  (@-r)" (@) q(2) - gmlz),

donde rq,...,r, son raices reales distintas, de multiplicidades k1,...,kn, ¥ q1,--.,qm son
polinomios irreducibles de grado 2. Si deg P < deg (), podemos escribir

Pz a a a
Qx) z—r1 (x—ry) (x —mr)kr
anl a’nkn
T T
+a1x—|—ﬁ1 .H+amx+5m7
a1 () Gm ()

para ciertos coeficientes reales a;j, o, 3; que se determinan resolviendo un sistema de ecuaciones
lineales. Cada uno de los sumandos anteriores se integra mediante las férmulas ya vistas
(logaritmos, potencias y términos del tipo arco-tangente).

4. Potencias de senos y cosenos

Afrontamos ahora el calculo de integrales del tipo
/ sin” x cos™ x dx,
distinguiendo dos casos segin haya un exponente impar o no.

4.i Caso con un exponente impar

Si uno de los exponentes es impar, separamos una potencia 1 de dicho exponente y escribimos
el resto como funcién de una sola razén trigonométrica.



Capitulo 6. Funciones integrables 198

| Ejemplo

e

Problema. Calcular
/ sin? z cos® z du.

Resolucion. En este caso el exponente impar es el de cos x:
/ sin’ z cos® z dx = / sin® z cos® z cosz dx
_ .2 .2
= [ sin®z (1 —sin“x) cosz dx.

Hacemos el cambio ¢ = sin x, de modo que dt = cosx dx y

sinz (1 —sin?z)de ~  t3(1 —t?)dt.
2 2
t t

Por tanto,

/Sin21: cos® z dx = /t2(1 — ) dt = /(t2 —t1)dt

_t3 t5+ _singx sin5x+c
3 5 3 5 '

N

4.ii Ambos exponentes pares

Cuando tanto n como m son pares, la técnica anterior no funciona directamente. En ese caso
usamos las identidades

2 2 2

sin z 4 cos® z = 1, cos” x — sin” ¢ = cos 2x,

de donde se obtiene

1 1
cos’z = 5(1+C082$), sin?z = 5(1—cos2x).

| Ejemplo I

be

Problema. Calcular
/ sin’ z cos® z dx.

Resolucion. Usamos las férmulas de reduccion de exponente:

/sin2:1: cos z dx = / (%(1 — cos 2x)) (%(1 + cos 25[7)) dx

2

sin2 z cos? x

1
= 1/(1 — cos? 2z) dx

1 1
:1/1das—1/cos22xdm.

Aplicamos de nuevo la misma identidad a cos? 2x:

cos? 2z = %(1 + cos4x),
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de forma que
1 1 1
.2 2
— -~ (-0 4
/sm x cos® z dx 1 4/2( + cosdx) dx
x 1
=2 2l 4
1 8/( + cosdz) dx
1
_r_r_Z cosdx dx
4 8 8
1
:g—ﬁsinélx—i—a

\

5. Integrales a trozos. Simetrias

Cuando integramos funciones definidas a trozos, conviene dividir el intervalo de integraciéon en

los puntos donde cambia la definiciéon de la funcion, usando la aditividad de la integral.

| Ejemplo

by

Problema. Calcular

2
/ 2 — 1] da.
0

Resolucion. Escribimos el integrando como una funcién a trozos:

2

2 -1, 2°—1>0 < z>1
’[L‘Q—l‘: 9 9
1—22 22-1<0 < z€(-1,1).

En el intervalo de integracién esto se traduce en

2 1 2
/]:L’Q—l\d:v:/(1—:U2)dx+/(:c2—1)d:c.
0 0 1

Calculamos ambas integrales:

1 3.1 1
Ngr= 22 ] =12
/()(1—33)611’—{1‘ 3}()*1 3

/12(:U2—1)d$= G =G-2-G-Y)
[iet-taa= (- (-9)- () -

Sumando,

\

Supongamos ahora que tenemos un intervalo simétrico respecto de 0, es decir, [—M, M| para

algin M > 0.

» Si f es impar, es decir, f(—z) = —f(z), entonces
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» Si f es par, es decir, f(x) = f(—x), entonces

/]Z[f(a:)d:c:Q/OMf(a:)dm.

Ambas identidades se demuestran de forma inmediata dividiendo el intervalo de integracién en
[-M,0] y [0, M] y aplicando el cambio de variable —z = ¢ en la integral a la izquierda de 0.

| Ejemplo

>

Problema. Calcular

2
/ 2% sin(z?) dz.
-2

Resolucion. El intervalo de integracion es simétrico respecto de 0, asi que estudiamos

la simetria del integrando
f(z) = 2°sin(z?).

Tenemos
f(=x) = (=z)°sin((—x)?) = —2”sin(2?) = —f(z),
luego f es impar. Por la propiedad anterior,
2
/ 2°sin(z?) dz = 0
-2

por simetria.
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