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Capítulo 1

Los números reales y sus propiedades

Comprender el conjunto de los números reales es el primer paso esencial en el estudio del
Análisis Matemático. Lo presentaremos a partir de sus subconjuntos más relevantes, sin dar una
definición concreta de número real, porque lo importante no es tanto qué es un real como qué
propiedades cumple el conjunto de los reales. En este primer tema estudiaremos su estructura
y propiedades fundamentales, que serán conceptos matemáticos básicos para los capítulos
posteriores.

1.1 Subconjuntos notables. Suma y producto de números reales.
El ejemplo más sencillo de números reales son los números que utilizamos para contar: 1, 2, 3, . . . .
Llamamos a este conjunto números naturales, y lo denotaremos mediante N. Distinguimos
dos tipos de números naturales: aquellos que pueden escribirse de la forma 2k, con k ∈ N,
reciben el nombre de pares, mientras que los de la forma 2k − 1 se llaman impares.

A partir de esta simple definición podemos deducir una primera propiedad de los números
naturales.

Proposición 1.1. Sea n ∈ N. Entonces, n es par ⇐⇒ n2 es par. Equivalentemente, n es
impar ⇐⇒ n2 es impar.

Demostración

Por un lado, es fácil ver que los números pares tienen cuadrado par, y los impares
tienen cuadrado impar:

(2k)2 = 4k2 = 2 (2k2), (2k − 1)2 = 4k2 − 4k + 1 = 2 (2k2 − 2k + 1)− 1.

Para obtener el recíproco basta observar que un número natural no puede ser par e
impar a la vez, por lo que la paridad de n2 determina inequívocamente la de n. ■

Nota: En disciplinas como la lógica, la teoría de conjuntos y la informática es común
definir N = {0, 1, 2, 3, . . .}. Ambas convenciones son válidas; lo importante es especificar
cuál se está usando. En este curso optamos por no considerar el cero como natural, ya
que simplifica la aritmética elemental y evita excepciones innecesarias.

1



Capítulo 1. Los números reales y sus propiedades 2

Los números naturales presentan algunas deficiencias. Por ejemplo, no son un conjunto cerrado
para operaciones aritméticas elementales como la resta o la división. Parte de estas se remedian
extendiendo el sistema al conjunto de los números enteros, formado por los números naturales
con signo y el cero:

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

Curiosidad: Z viene del alemán Zahl, “número”.

Un sistema más amplio de números se obtiene tomando cocientes de enteros, es decir, números
de la forma m

n con m ∈ Z y n ∈ N. Estos son los denominados números racionales, y el
conjunto de todos ellos se denota por Q (de “quotient”, cociente).

Calculando la expresión decimal de un número racional dividiendo el numerador por el deno-
minador, se obtiene un número entero o un número decimal exacto o periódico: 0.2, −0.35,
0.3 = 0.333 . . ., 4.9989 = 4.99898989 . . .

También es cierto el recíproco: cualquier número decimal de este tipo puede escribirse como
una fracción de números enteros.

2.31 = 231− 23
90 = 104

45

En el conjunto Q tenemos una operación llamada suma, que a cada par (a, b) de números
racionales asocia un único número racional, la suma de a con b, indicada por a+ b. Asimismo,
disponemos de una segunda operación llamada producto, que a cada par (a, b) asocia un único
número racional, el producto de a con b, indicado por a · b o, simplemente, ab. Estas operaciones
tienen las siguientes propiedades:

Propiedades de la suma. Para cualesquiera a, b, c ∈ Q se cumplen:

(P1) Propiedad asociativa: a+ (b+ c) = (a+ b) + c.

(P2) Propiedad conmutativa: a+ b = b+ a.

(P3) Existencia de elemento neutro: a+ 0 = 0 + a = a.

(P4) Existencia de elemento opuesto: a+ (−a) = (−a) + a = 0.

Propiedades del producto. Para cualesquiera a, b, c ∈ Q se cumplen:

(P5) Propiedad asociativa: a · (b · c) = (a · b) · c.

(P6) Propiedad conmutativa: a · b = b · a.

(P7) Existencia de elemento unidad: a · 1 = 1 · a = a (con 1 ̸= 0).

(P8) Existencia de elemento inverso: si a ̸= 0, entonces a · a−1 = a−1 · a = 1.

(P9) Propiedad distributiva respecto de la suma: a · (b+ c) = a · b+ a · c.

Es fácil comprobar que los elementos neutros de la suma y del producto son únicos. Además,
para cada número racional el elemento opuesto es único y, si es distinto de cero, también el
inverso. Dado que a · 0 = 0 para todo a ∈ Q, el 0 no tiene inverso multiplicativo y 1

0 no
tiene sentido.

Verificar cada una de estas afirmaciones es un buen ejercicio para el lector.
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Podemos comprobar fácilmente que Q es un conjunto cerrado para la suma y el producto, esto
es, el resultado de sumas y productos de números racionales es también un número racional.

Proposición 1.2. Si a, b ∈ Q, entonces a+ b ∈ Q, a · b ∈ Q, y si b ̸= 0, entonces a/b ∈ Q.

Demostración

Escribiendo a = p

q
y b = r

s
, con p, r ∈ Z y q, s ∈ Z \ {0}, se tiene

a+ b = ps+ rq

qs
∈ Q, ab = pr

qs
∈ Q.

Además, si r ̸= 0 (q ̸= 0),
a

b
= p/q

r/s
= ps

qr
∈ Q.

En todos los pasos hemos usado que Z es cerrado para la suma y el producto. ■

Lectura en clave algebraica:
En N, la suma no tiene neutro ni opuestos (fallan (P3) y (P4)), y con el producto
no hay inversos multiplicativos (falla (P8)); por eso (N,+) es un semigrupo
conmutativo.
En Z, con + y ·, obtenemos un anillo conmutativo con unidad (de hecho, un
dominio de integridad); no es un cuerpo porque (P8) falla salvo para ±1.
En Q, con + y ·, sí tenemos un cuerpo; más aún, es un cuerpo ordenado (lo
veremos enseguida), aunque no es completo.

Desde la Antigüedad, la escuela pitagórica ya constató esta falta de completitud de Q, o
existencia de "huecos", al mostrar que la diagonal de un cuadrado de lado 1 tiene longitud

√
2,

que no es un número racional.

¡Atención! Si a > 0, a tiene dos raíces cuadradas:
√
a y −

√
a, pero

√
a denota siempre

la raíz positiva. Por ejemplo, 4 tiene dos raíces cuadradas: −2 y 2, pero
√

4 = 2.
¡Escribir

√
4 = ±2 no es correcto!

Proposición 1.3.
√

2 /∈ Q.

Demostración

Supongamos por reducción al absurdo que
√

2 ∈ Q, y por tanto puede escribirse como
una fracción irreducible

√
2 = p

q
, con p, q ∈ Z, q ̸= 0 y mcd(p, q) = 1.

Entonces p2 = 2q2. Usando la Proposición 1.1 obtenemos que p también es par, lo que
nos permite escribir p = 2m para algún m ∈ N. Sustituyendo, 4m2 = 2q2 ⇒ q2 = 2m2,
así que q también es par. Por tanto p y q son ambos pares, lo cual contradice que
mcd(p, q) = 1. Por tanto,

√
2 no es racional. ■
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El conjunto de los números irracionales, I, está compuesto por los números que no son
racionales. Dicho de otra forma, son los números que no pueden escribirse como fracciones de
números enteros. Su expresión decimal es infinita y no periódica: 0,246810 . . ., π = 3,1415926 . . .,
e = 2,7182818 . . .,

√
2 = 1,41421 . . ..

En general, si n ∈ N no es un cuadrado perfecto, entonces
√
n es irracional. Además, si a ∈ Q y

b ∈ I, entonces a+ b es irracional y ab también (si a ≠ 0). Por tanto, números como Φ = 1+
√

5
2 ,

1−
√

3, −
√

7, 2
√

2, . . . son irracionales.

Esto nos permite ver al conjunto de los números reales como la unión (disjunta) de los
números racionales y los irracionales:

R = Q ∪ I.

Marco algebraico: El sistema (R,+, ·) tiene estructura de cuerpo conmutativo (verifica
las 9 propiedades vistas anteriormente y 3 adicionales que veremos a continuación) y,
además, es completo.

0 1 12 350 48 5 16−1 −5 −10 −39

25,3401401401... −0,101232323... 48,259

22
7

−7
3

0,1010010001 . . . −0,1234567 . . . √
2

π

Enteros

ZNaturales

N

Racionales

Q

Reales

R

En la Proposición 1.3 vimos que la ecuación x2 = 2 no admite soluciones en Q; de forma
equivalente, el polinomio x2 − 2 carece de raíces racionales.

Este ejemplo sugiere distinguir, dentro de R, aquellos números que sí pueden aparecer como
ceros de polinomios con coeficientes enteros. Definimos el conjunto de los números algebraicos
por

A =
{
x ∈ R : ∃ p ∈ Z[x] \ {0} tal que p(x) = 0

}
.

De forma manifiesta se tiene Q ⊂ A ⊂ R.

El complemento R \ A, necesariamente contenido en I, recibe el nombre de números trascen-
dentes. Algunos ejemplos famosos son π = 3.1415 . . . y e = 2.7182 . . ., aunque demostrarlo
requiere herramientas que veremos en temas sucesivos. Como veremos, el estudio de R está
íntimamente ligado al concepto de límite.
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¡Ojo! No todos los polinomios admiten raíces reales. Por ejemplo, no existe x ∈ R tal
que x2 + 1 = 0. Para resolver esa ecuación hay que salir de R y considerar los números
complejos C, que no forman parte del temario de este curso.

Por otra parte, los polinomios con coeficientes enteros de grado impar proporcionan ejemplos
sencillos de números algebraicos. Esto es una consecuencia del siguiente resultado:

Proposición 1.4. Si p(x) ∈ R[x] tiene grado impar, entonces posee al menos una raíz real.

Idea de la demostración

Esta demostración no se vio en clase.

Las raíces no reales de un polinomio con coeficientes reales aparecen en pares conjugados.
Por tanto, un polinomio de grado impar no puede tener todas sus raíces no reales;
queda al menos una real.
Por ejemplo, la ecuación x5 + x+ 1 = 0 tiene al menos una raíz real. ■

1.2 Orden de los números reales.
Además de estas propiedades básicas de la suma y el producto, presentaremos ahora las relativas
a las desigualdades, que nos permiten comparar números reales y que desempeñan un papel
fundamental en el cálculo infinitesimal. Con el propósito de simplificar las ideas, nos restringimos
en primer lugar a los números racionales.

Definición 1.5. En Q, definimos el conjunto de números positivos como

P =
{
p

q
: p, q ∈ N o bien − p,−q ∈ N

}
.

Para a ∈ Q, escribimos a ∈ P ⇐⇒ a > 0.

Con esta noción, definimos una relación de orden en Q mediante P :

a < b ⇐⇒ b− a ∈ P,
a > b ⇐⇒ b < a,

a ≤ b ⇐⇒ b− a ∈ P ∪ {0} (equivalentemente, a < b o a = b),
a ≥ b ⇐⇒ a > b o a = b (equivalentemente, a− b ∈ P ∪ {0}).

Propiedades de P .

(P10) Ley de tricotomía: para cada a ∈ Q se verifica exactamente una de las siguientes
alternativas: a = 0, a ∈ P o −a ∈ P .

(P11) Cerradura (o estabilidad) de la suma: si a, b ∈ P , entonces a+ b ∈ P .

(P12) Cerradura (o estabilidad) del producto: si a, b ∈ P , entonces a · b ∈ P .

De las propiedades de P se deducen fácilmente las reglas básicas para operar con desigualdades.
Trabajaremos con la relación binaria ≤, que es una relación de orden porque cumple las
siguientes propiedades para todo a, b, c ∈ Q:
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Reflexiva: a ≤ a.

Antisimétrica: si a ≤ b y b ≤ a, entonces a = b.

Transitiva: si a ≤ b y b ≤ c, entonces a ≤ c.

Demostración de la transitividad

Por hipótesis, b − a ∈ P ∪ {0} y c − b ∈ P ∪ {0}. Sumando y restando b, se tiene
c− a = (c− b) + (b− a) ∈ P ∪ {0}, ya que si ambos son positivos la suma es positiva
por la propiedad (P11), y si al menos uno de los dos sumandos es cero entonces el
resultado se tiene trivialmente.
Verificar las otras dos propiedades se propone como ejercicio para el lector. ■

Nótese que la relación < es transitiva pero no reflexiva. Además, ≤ es un orden total: dados
a, b ∈ Q cualesquiera, siempre ocurre a ≤ b o bien b ≤ a.

Las consecuencias que usaremos con más frecuencia son:

a ≤ b =⇒ a+ c ≤ b+ c,

a ≤ b, 0 ≤ c =⇒ a · c ≤ b · c,
a ≤ b =⇒ −a ≥ −b,

0 < a ≤ b =⇒ 1
a
≥ 1
b
.

Ejercicio 1.6 (Para el lector). Si a < b y b < 0, entonces a < 0 y, por tanto, ab > 0.

Solución

De a < b y b < 0 se sigue a < b < 0, luego a < 0. Así, −a ∈ P y −b ∈ P ; por la
cerradura del producto en P , (−a)(−b) ∈ P , es decir, ab > 0. ■

1.3 Valor absoluto.
Definición 1.7. Sea a ∈ R. Definimos el valor absoluto de a mediante la fórmula

|a| =
{
a, a ≥ 0,
−a, a < 0,

o equivalentemente |a| =
√
a2.

En particular, |a| ∈ P ∪ {0} y se cumple trivialmente a ≤ |a|.

Propiedades del valor absoluto. Sean a, b ∈ R. Se cumplen:

(1) |a| ≥ 0 y |a| = 0 ⇐⇒ a = 0; además |−a| = |a| y |a|2 = a2.

(2) |a · b| = |a| |b| y, si b ̸= 0,
∣∣∣∣ab
∣∣∣∣ = |a|
|b|

.

(3)

Para x ∈ R :
{
|x| ≤ a ⇐⇒ −a ≤ x ≤ a,

|x| > a ⇐⇒ x > a o x < −a.
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Representación en la recta real (para a > 0):

−a a −a a

(4) Desigualdad triangular: |a+ b| ≤ |a|+ |b| , y la igualdad se da si, y solo si, a y b tienen
el mismo signo o uno de ellos es cero.

Como paso previo a la demostración de la desigualdad triangular, necesitamos el siguiente
resultado:

Lema 1.8. Si x, y ≥ 0, entonces x2 ≥ y2 ⇒ x ≥ y.

Demostración

x2 ≥ y2 ⇒ x2−y2 ≥ 0⇒ (x+y)(x−y) ≥ 0. Multiplicamos la anterior desigualdad
por (x+ y)−1, que es una cantidad positiva (¿por qué?), para obtener x− y ≥ 0,
como queríamos demostrar. ■

Demostración de la desigualdad triangular

Como |a+ b| =
√

(a+ b)2, es más sencillo comparar los cuadrados:

|a+ b| 2 = (a+ b)2 = a2 + b2 + 2ab ≤ a2 + b2 + 2 |a| |b| = (|a|+ |b|)2.

Usando el Lema 1.8 concluimos |a+ b| ≤ |a|+ |b|.

Supongamos ahora que se da la igualdad, esto es, |a+ b| = |a|+ |b|.
Elevando al cuadrado y simplificando, llegamos a que

ab = |a| |b| ⇐⇒ ab ≥ 0,

es decir, a y b tienen el mismo signo (o alguno de ellos es 0). El recíproco se puede
verificar de forma inmediata.

■

(5) Desigualdad triangular inversa:
∣∣ |a| − |b| ∣∣ ≤ |a− b|.

Demostración

Por la desigualdad triangular,

|a| = |a+ b− b| ≤ |a− b|+ |b| ⇒ |a| − |b| ≤ |a− b|.

Intercambiando a y b,

|b| = |b+ a− a| ≤ |a− b|+ |a| ⇒ |b| − |a| ≤ |a− b|.

Es decir, −|a− b| ≤ |a| − |b| ≤ |a− b|, lo que equivale a
∣∣|a| − |b|∣∣ ≤ |a− b|. ■
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1.4 Supremo e ínfimo. Postulado del continuo.
Definición 1.9. Sea A ⊂ R un subconjunto no vacío y x ∈ R.

Diremos que x es una cota superior de A si a ≤ x para todo a ∈ A.

Diremos que x es una cota inferior de A si a ≥ x para todo a ∈ A.

Si A tiene alguna cota inferior (resp. superior), diremos que está acotado inferiormente o
minorado (resp. acotado superiormente o mayorado). Si se satisfacen ambas, diremos que
A es acotado.

Definición 1.10. Sea A ⊂ R un subconjunto no vacío y mayorado. Llamamos supremo de A a
la menor de sus cotas superiores. Equivalentemente, x = supA si y sólo si:

(1) x es cota superior de A;

(2) para todo ε > 0 existe a ∈ A tal que x − ε ≤ a ≤ x (cualquier cantidad por debajo de x
deja de ser cota superior).

Si además supA ∈ A, entonces supA = máxA y se llama máximo de A.

De forma análoga, definimos:

Definición 1.11. Sea A ⊂ R un subconjunto no vacío y minorado. Llamamos ínfimo de A ⊂ R
a la mayor de sus cotas inferiores. Equivalentemente, x = ı́nf A si y sólo si:

(1) x es cota inferior de A;

(2) para todo ε > 0 existe a ∈ A tal que x ≤ a ≤ x+ ε.

Si además x ∈ A, recibe el nombre de mínimo de A, y se denota por mı́nA.

Cuando encontramos un mayorante o minorante dentro de un conjunto, la condición (2) de
supremo e ínfimo se verifica trivialmente con a igual a dicha cota. Esto nos proporciona el
siguiente atajo para encontrar, si los hay, el máximo y el mínimo de un conjunto A.

Proposición 1.12. Sea A ⊂ R, A ≠ ∅. Si x ∈ A es una cota superior (resp. cota inferior) de
A, entonces x = máxA (resp. x = mı́nA).

Postulado de continuidad o Axioma del continuo o de Dedekind

(P13) Si A es un subconjunto de R no vacío y mayorado (resp. minorado), entonces existe
x ∈ R tal que x = supA (resp. x = ı́nf A). Dicho de otro modo, el conjunto de los
mayorantes de A (resp. minorantes) tiene mínimo (resp. máximo).

Podemos convencernos de forma sencilla que Q no satisface la propiedad (P13). Consideramos
el conjunto A formado por las aproximaciones decimales sucesivas de

√
2:

A = {1, 1.4, 1.41, 1.414, . . . }.

Se cumple A ⊂ Q y a ≤ 2 para todo a ∈ A, es decir, A está mayorado en Q. Sin embargo,
podemos ver que no admite supremo racional.

Demostración

Supongamos que existe q ∈ Q tal que supA = q. Por construcción, a ≤
√

2 para todo
a ∈ A, por lo tanto q <

√
2 por definición de supremo (la igualdad no puede darse ya
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que
√

2 ∈ I y q ∈ Q). Entonces, existe una primera posición decimal k ∈ N de forma
que q es menor que la truncatura de

√
2 hasta el k−ésimo decimal, esto es,

q <
⌊10k ·

√
2⌋

10k = 1. 414213 . . . 7︸ ︷︷ ︸
k decimales

∈ A (⌊x⌋ ≡ parte entera de x).

lo que contradice que q sea el supremo de A. ■

Proposición 1.13. (Propiedad arquimediana) N no está mayorado en R. Equivalentemente,
dado x ∈ R puede encontrarse n ∈ N tal que n > x.

Demostración

Supongamos que supN = z ∈ R. Entonces, z − 1 no es un mayorante de N, lo que nos
da un m ∈ N tal que z − 1 ≤ m < z. Como entre z − 1 y z puede haber a lo sumo un
número natural, deducimos que n ≤ m para todo n ∈ N, por lo que m sería un máximo
de N, lo cual es imposible, ya que m < m+ 1 ∈ N. ■

Ejemplo

Problema. Sea A =
{

1
n + 1

m : n,m ∈ N
}

. Veamos que A es acotado y calculemos
supA e ı́nf A.
Resolución. Por un lado, 0 < 1

n + 1
m , por lo que A está minorado e ı́nf A ≥ 0.

Por otro lado, como se tiene n ≥ 1 y m ≥ 1, entonces

1
n

+ 1
m
≤ 2,

por lo que A está mayorado y supA ≤ 2. Dado que 2 ∈ A (para n = m = 1), entonces
2 es el máximo de A por la Proposición 1.12.

Veamos ahora que ı́nf A = 0. Sea ε > 0. Debemos encontrar a ∈ A tal que

0 ≤ a = 1
n

+ 1
m
< ε.

Por la propiedad arquimediana de N, existe n ∈ N tal que n > 2
ε , lo que nos da 1

n <
ε
2 .

Entonces, tomando a = 1
n + 1

n se verifica que

0 < a <
ε

2 + ε

2 = ε.

Así, ı́nf A = 0.

Hemos visto que un conjunto de racionales acotado superiormente (resp. inferiormente) no tiene
por qué tener sup (resp. ı́nf) racional. En R, en cambio, esto siempre ocurre. Esta diferencia
caracteriza a los reales y se resume diciendo que R es completo.
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Definición 1.14. Por extensión de estas propiedades intuitivas de Q, podemos definir
R como un conjunto numérico provisto de operaciones internas + y · que satisfacen
(P1–P9), junto con un subconjunto R+ (que juega el papel de P ) que verifica (P10–P12),
y que, además, cumple el postulado de continuidad (P13).

Claramente, R así definido no es vacío, pues 0, 1 ∈ R y a partir de estos y las operaciones
elementales comentadas anteriormente pueden construirse infinitos elementos (Q).

El axioma del continuo nos permite identificar los números reales R con los puntos de una recta.
Para visualizar esto, dibujamos una recta horizontal y fijamos el 0 en un punto que llamaremos
origen. Asociamos el 1 con otro punto a su derecha y tomamos el segmento de extremos 0 y 1
como unidad de longitud. Así, todo x > 0 se sitúa a la derecha del origen a distancia x, mientras
que su opuesto −x es el punto simétrico respecto del origen.

−x 0 1 x > 0

Adoptando este punto de vista, se tiene que el valor absoluto mide la distancia entre dos puntos:

d(a, b) = |a− b| = |b− a| ≥ 0.

Esta noción conduce de forma natural al concepto de intervalo: subconjuntos de R que, en
la representación geométrica de la recta real, se identifican con segmentos o semirrectas, con
extremos abiertos o cerrados según el caso.

Definición 1.15. Sean a, b ∈ R con a < b. Se definen

(a, b) = {x ∈ R : a < x < b } (intervalo abierto),
[a, b] = {x ∈ R : a ≤ x ≤ b } (intervalo cerrado),
(a, b] = {x ∈ R : a < x ≤ b } (semiabierto o semicerrado),
[a, b) = {x ∈ R : a ≤ x < b } (semiabierto o semicerrado).

(−∞, a) = {x ∈ R : x < a } (semirrecta abierta),
(−∞, a] = {x ∈ R : x ≤ a } (semirrecta cerrada),
(a,+∞) = {x ∈ R : x > a } (semirrecta abierta),
[a,+∞) = {x ∈ R : x ≥ a } (semirrecta cerrada),

La demostración de la siguiente propiedad, que relaciona la noción de distancia introducida
anteriormente con los intervalos recién definidos, se deja como ejercicio para el lector:

Proposición 1.16. Sean x, a ∈ R y r > 0. Se tiene

|x− a| < r ⇐⇒ x ∈ (a− r, a+ r), |x− a| ≤ r ⇐⇒ x ∈ [a− r, a+ r].
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Convención de notación: Cuando pueda haber ambigüedad con los paréntesis (por
ejemplo, si (x, y) denota pares ordenados en el plano), escribiremos los intervalos
abiertos con corchetes hacia fuera:

]a, b[ en lugar de (a, b),

y, de forma análoga, los semiabiertos como [a, b[ y ]a, b]. Ambas notaciones son equiva-
lentes; sólo adoptaremos ] · , · [ para evitar confusiones.

1.5 Densidad de Q e I en R.
El objetivo de esta sección es demostrar la siguiente idea intuitiva: por pequeño que se tome
un intervalo (a, b) ⊂ R, siempre aparecen infinitos números racionales e infinitos irracionales.
Claramente, los enteros Z no verifican esta propiedad R: por ejemplo, (0, 1) ∩ Z = ∅.

Dividiremos la demostración de esto en varios pasos sencillos.

Proposición 1.17. Dados a, b ∈ Q con a < b, existen infinitos q ∈ Q tales que a < q < b.

Demostración

Basta tomar el promedio q = a+ b

2 . Puesto que a < b, se cumple

a = a

2 + a

2 <
a

2 + b

2 = q <
b

2 + b

2 = b.

Repitiendo el procedimiento con a y q o b y q se obtienen infinitos racionales distintos
entre a y b. ■

Ejemplo

Problema. Encontrar un número racional entre 1
5 y 3

5 .
Resolución. El promedio sirve:

1
5 <

1
2

(1
5 + 3

5

)
= 2

5 <
3
5 .

Además, podemos encontrar más puntos tomando promedios sucesivos:

1
5 <

1
2

(1
5 + 2

5

)
= 3

10 ,
2
5 <

1
2

(2
5 + 3

5

)
= 1

2 <
3
5 .

0 1
5

3
5

1

2
5

1
5

2
5

3
5

3
10

1
2

A continuación, demostramos que entre dos racionales cualesquiera también hay infinitos
irracionales. La idea de la demostración es sumar un irracional muy pequeño al punto intermedio.
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Lema 1.18. Sean n ∈ N, q ∈ Q con q ̸= 0 y r ∈ I. Entonces:

(1) Si n no es un cuadrado perfecto, entonces
√
n es irracional. En particular, para todo número

primo p, √p ∈ I.

(2) q · r ∈ I.

(3) q + r ∈ I.

Demostración

El item (1) se demuestra de manera análoga a la Proposición 1.3, y la omitimos para
mayor brevedad. Demostramos por tanto los puntos (2) y (3).

En primer lugar, si qr fuera racional, entonces por la Proposición 1.2 también lo sería
r = qr

q
. De igual forma, si q + r fuera racional, entonces r = (q + r)− q sería racional.

Ambas conclusiones contradicen la hipótesis r ∈ I. ■

Proposición 1.19. Dados a, b ∈ Q con a < b, existen infinitos s ∈ I tales que a < s < b.

Demostración

Sea m = a+ b

2 y tomemos un número primo p. Observamos que

0 < 1
√
p

=
√
p

p
< 1,

Ahora, definimos
ε = (b−m)

√
p

p
.

Por el Lema 1.18, se tiene ε ∈ I. Además, 0 < ε < b − m. Finalmente, definimos
s = m+ ε, y comprobamos que es el número que buscamos:

a < m < s = m+ ε < m+ (b−m) = b.

Además, s ∈ I por el Lema 1.18. Repitiendo el procedimiento con distintos primos p se
obtienen infinitos irracionales en (a, b).

a m bs = m+ ε

ε

■

Nota: Demostrar que el conjunto de los números primos es infinito puede hacerse
mediante una sencilla reducción al absurdo, usando el algoritmo de la división Euclídea.

En el tercer paso, demostramos que entre dos irracionales cualesquiera siempre podemos
encontrar un racional.

Proposición 1.20. Si r, s ∈ I con r < s, entonces existen infinitos racionales q ∈ Q tales que
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r < q < s.

Demostración

El conjunto de los números naturales no está mayorado en R, por lo que es posible
encontrar un natural n ∈ N tal que n(s− r) > 1. Entonces ns > nr + 1, lo que implica
que el intervalo (nr, ns) tiene longitud estrictamente mayor que uno. Esto nos garantiza
la existencia de un entero k ∈ Z tal que rn < k < sn.

Para concluir, basta tomar q = k
n ∈ Q. Los infinitos valores posibles se obtienen al

tomar otros naturales m ≥ n (obteniendo por tanto distintos k). ■

Ejemplo

Problema. Hallar un número racional entre
√

5 y
√

6.
Resolución. Buscamos n ∈ N y k ∈ Z tales que

√
5 < k

n
<
√

6 .

La desigualdad anterior equivale a 5n2 < k2 < 6n2. Tomando n = 5 se tiene

5n2 = 125 y 6n2 = 150,

y como 144 = 122 verifica 125 < 144 < 150, obtenemos

√
5 =
√

125
5 <

12
5 <

√
150
5 =

√
6.

Así, q = 12
5 es un racional entre

√
5 y
√

6.

Alternativamente, podemos proceder como sigue: tomamos n = 3 y escribimos

√
5 =
√

45
3 ,

√
6 =
√

54
3 .

Buscamos ahora un cuadrado perfecto entre 45 y 54; vale 49, luego

√
5 <
√

49
3 = 7

3 <
√

6.

Así, 7
3 es un racional entre

√
5 y
√

6.

Ya tenemos todos los ingredientes necesarios para demostrar el principal resultado de esta
sección, que es la densidad de Q e I en R.

Teorema 1.21. Dados a, b ∈ R con a < b, existen infinitos números racionales e infinitos
irracionales en el intervalo (a, b).
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Demostración

Si a y b son ambos racionales, podemos aplicar los Lemas 1.17 y 1.18. Si a ∈ Q y b ∈ I,
entonces el punto medio m = a+b

2 ∈ I, por lo que tomando el nuevo intervalo (m, b) (o
(a,m), según corresponda), podemos reducirnos al caso de dos extremos irracionales.

En este escenario, la existencia de infinitos racionales viene dada por el Lema 1.20.
Luego, podemos encontrar infinitos irracionales aplicando el Lema (1.18) a los racionales
recién encontrados. ■

Nota: Como consecuencia particular de esta propiedad, existen infinitos números reales
entre dos números reales distintos cualesquiera. Por tanto, ningún real tiene sucesor
inmediato, como sí ocurre en los enteros.

1.6 Principio de inducción.
Llamaremos demostración a un encadenamiento de afirmaciones cuya validez es fácil de com-
probar en cada paso, que parte de una situación inicial (la hipótesis) y concluye en el resultado
que queremos (la tesis). En este tema hemos visto dos tipos principales de demostraciones:

Directa: se deduce la tesis a partir de las hipótesis con reglas ya conocidas.

Por reducción al absurdo: se supone falsa la tesis y se llega a una contradicción. Por
ejemplo, la Proposición 1.3, en la que probábamos que

√
2 /∈ Q.

Introducimos ahora un nuevo tipo de argumento que nos permite demostrar la validez de
propiedades o fórmulas que dependen de un número natural n ∈ N.

Sea P (n) una afirmación que depende de n ∈ N. Una demostración por inducción consiste en
dos pasos principales:

(1) Caso base: P (n0) es verdadera (típicamente n0 = 1).

(2) Paso inductivo: si P (n) es verdadera (esto se llama hipótesis de inducción), entonces
también lo es P (n+ 1).

Con estas dos comprobaciones, P (n) resulta verdadera para todo n ≥ n0.

Nota: Intuitivamente, podemos compararlo con subir una escalera: si el primer escalón
se puede pisar, y sabemos pasar de cada escalón al siguiente, entonces podemos subir
la escalera indefinidamente.

Principio de inducción: Sea P (n) una proposición para n ∈ N y sea n0 ∈ N. Si P (n0) es
verdadera y, dado un n ≥ n0 (fijo pero arbitrario), de P (n) se sigue P (n+ 1), entonces P (n) es
verdadera para todo n ≥ n0.
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Ejemplo

Problema. Demostrar que para todo n ∈ N se cumple

1 + 2 + · · ·+ n = n(n+ 1)
2 .

Resolución. Planteamos una demostración por inducción.

Comprobamos la veracidad de la etapa base; en este caso, n = 1:

1 = 1(1 + 1)
2 = 1.

Para verificar el paso inductivo, supongamos que la igualdad es cierta para algún
n ∈ N, y buscamos demostrar que se verifica también para n+ 1:

1 + 2 + · · ·+ n = n(n+ 1)
2 (hipótesis de inducción).

Entonces

1 + 2 + · · ·+ n+ (n+ 1) = n(n+ 1)
2 + (n+ 1)

= n(n+ 1) + 2(n+ 1)
2 = (n+ 1)(n+ 2)

2 ,

que es precisamente la fórmula para n+ 1.

Nota: La fórmula anterior también puede demostrarse de forma directa. Llamamos
Sn = 1 + 2 + · · ·+ n. Escribiendo también Sn al revés y sumando término a término,
tenemos:{
S = 1 + 2 + · · ·+ (n− 1) + n,

S = n+ (n− 1) + · · ·+ 2 + 1,
=⇒ 2S = (n+ 1) + · · ·+ (n+ 1)︸ ︷︷ ︸

n veces

= n(n+1),

de modo que S = n(n+ 1)
2 .

También puede hacerse una demostración basada en un dibujo, pero hay que tener
cuidado con estas: ¡no podemos sacar conclusiones sobre lo que el dibujo
nos parece!

Podemos comprobar que el número 1 + 2 + · · ·+ n aparece como la cantidad de puntos
de un triángulo escalonado con filas de longitudes 1, 2, . . . , n.

Dos copias de ese triángulo forman un rectángulo con n · (n+ 1) puntos, luego la mitad
vale exactamente n(n+1)

2 .
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n

n+ 1

Variantes del principio de inducción A veces, tendremos un caso base para n0 ̸= 1, es decir,
debemos demostrar P (n) sólo para n ≥ n0, donde n0 es un natural dado (no necesariamente 1).
En esta situación, comprobamos:

P (n0) es verdadera (caso base).

Si P (n) se verifica para algún n ≥ n0, entonces P (n+ 1) también (paso inductivo).

Ejemplo

Problema. Probar que, para todo natural n ≥ 10, se cumple 2n ≥ n3.
Resolución. Empezamos comprobando el caso base, correspondiente a n = 10:

210 = 1024 ≥ 1000 = 103.

Paso inductivo. Supongamos cierta la desigualdad para algún n ≥ 10: 2n ≥ n3.
Entonces

2n+1 = 2 · 2n ≥ 2n3.

Por otra parte, sacando factor común n3 y usando que n ≥ 10,

(n+ 1)3 = n3 + 3n2 + 3n+ 1

≤ n3
(

1 + 3
10 + 3

100 + 1
1000

)
= 331

1000 n
3 ≤ 2n3.

Luego 2n+1 ≥ 2n3 ≥ (n+ 1)3, y queda probado el paso inductivo.

A veces, el paso inductivo requiere conocer simultáneamente P (n − 1) y P (n). En ese caso,
verificamos:

P (n0) y P (n0 + 1) son verdaderas (dos casos base).

Para n ≥ n0 + 1, si P (n− 1) y P (n) son verdaderas, entonces P (n+ 1) es verdadera.

Ejercicio 1.22. Demostrar por inducción que, para todo n ∈ N,

1 + 3 + · · ·+ (2n− 1) = n2.
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El siguiente ejemplo muestra otra variación del mismo tipo de razonamiento, en el que damos
saltos de cuatro en cuatro números naturales.

Ejemplo

Problema. Probar que, si n ∈ N no es múltiplo de 4, entonces Sn = 1n + 2n + 3n + 4n
es un múltiplo de 10.
Resolución. En la etapa base, comprobaremos que la afirmación es cierta para
n = 1, 2, 3. En efecto, S1 = 10, S2 = 30 y S3 = 100.

A continuación, veamos que, si la afirmación es cierta para un n ∈ N, entonces también
lo es para n+ 4. Partimos de una sencilla identidad:

an+4 − an = an(a2 + 1)(a2 − 1) ∀a > 0 ∀n ∈ N.

Entonces, podemos escribir

Sn+4 − Sn = 1n+4 − 1n + 2n+4 − 2n + 3n+4 − 3n + 4n+4 − 4n

= 15 · 2n + 80 · 3n + 255 · 4n = 10(3 · 2n−1 + 8 · 3n + 102 · 4n−1︸ ︷︷ ︸
k1∈N

).

Por hipótesis de inducción, Sn = 10k0 con k0 ∈ N, lo que nos da

Sn+4 = Sn + 10k1 = 10(k0 + k1),

como se pretendía demostrar.

Demostración gráfica: Partimos de un cuadrado n× n de puntos. Para cada k =
1, 2, . . . , n, la capa que convierte el cuadrado (k − 1) × (k − 1) en el cuadrado k × k
tiene exactamente 2k − 1 puntos: la fila superior de longitud k y la columna derecha
de longitud k − 1. Sumando todas las capas se obtiene n2.

1.7 Numerabilidad
Finalmente, presentamos herramientas que nos permiten comparar de forma rigurosa la cantidad
de elementos que hay en algunos de los conjuntos numéricos que hemos introducido.

Definición 1.23. Sean X,Y conjuntos. Una aplicación (o función) es una relación f ⊂ X × Y
tal que, para cada x ∈ X, existe un único y ∈ Y con f(x) = y.
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Decimos que f es inyectiva (uno-a-uno) si f(x1) = f(x2) implica que x1 = x2. Equiva-
lentemente, cada y ∈ Y tiene a lo sumo una preimagen.

Decimos que f es sobreyectiva si para todo y ∈ Y existe x ∈ X tal que f(x) = y. Dicho
de otra forma, cada y tiene al menos una preimagen.

f se dice biyectiva si es inyectiva y sobreyectiva a la vez.

X Y

x1

x2

x3

y1

y2

y3

y4

Aplicación inyectiva pero no sobreyectiva
X Y

x1

x2

x3

x4

y1

y2

y3

Aplicación sobreyectiva pero no inyectiva

Definición 1.24. Llamamos cardinal de un conjunto X al número de elementos de X y lo
denotamos por #X o card(X).

Para conjuntos finitos, una aplicación inyectiva X → Y implica card(X) ≤ card(Y ), y una
biyectiva X ↔ Y implica card(X) = card(Y ). Podemos usar este hecho para definir la noción
de tener la misma cantidad de elementos para dos conjuntos cualesquiera.

Definición 1.25. Decimos que dos conjuntos X e Y son equinumerosos si existe una biyección
entre ellos.

Proposición 1.26. Si X ⊂ Y , entonces #X ≤ #Y .

Demostración

De forma clara, la aplicación inclusión

I : X → Y

I(x) = x

es inyectiva, lo que nos da directamente el resultado. ■

Definición 1.27. Un conjunto X es numerable si existe una aplicación inyectiva X → N.
En particular, todo conjunto finito es numerable. El cardinal de cualquier conjunto infinito y
numerable se denota por ℵ0 (el menor cardinal infinito).

Proposición 1.28. N ∪ {0} es numerable y #(N ∪ {0}) = ℵ0.

Demostración

Dado que N ⊂ N ∪ {0}, entonces #(N ∪ {0}) ≥ ℵ0. Por otro lado, es inmediato
comprobar que la aplicación n 7→ n+ 1 de N ∪ {0} en N es inyectiva, lo que nos da la
otra desigualdad. ■
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Proposición 1.29. Z es numerable. De hecho, #Z = ℵ0.

Demostración

Dado que N ⊂ Z, tenemos #Z ≥ #N = ℵ0 por la proposición anterior. Veamos ahora
la otra desigualdad, que se sigue de la existencia de una aplicación inyectiva f : Z→ N.

Consideramos f : Z→ N dada por f(k) = −2k si k ≤ 0 y f(k) = 2k − 1 si k ≥ 1. Así:

0 7→ 0, 1 7→ 1, −1 7→ 2, 2 7→ 3, −2 7→ 4, 3 7→ 5, . . .

Supongamos que, para n,m ∈ Z se tiene f(n) = f(m). Dado que f(k) = 0⇔ k = 0,
entonces necesariamente n y m son ambos positivos o ambos negativos. Vemos que:

(1) Si n,m ≤ −1, entonces f(n) = f(m)⇔ −2n = −2m⇔ n = m.
(2) Si n,m ≥ 1, entonces f(n) = f(m)⇔ 2n− 1 = 2m− 1⇔ n = m.

Consecuentemente, f es inyectiva y #Z ≤ ℵ0. ■

Proposición 1.30. Q es numerable. De hecho, #Q = ℵ0.

Idea de la demostración

Usando el método de Cantor, nos convencemos de que existe una aplicación inyectiva
entre N y los números racionales positivos. Consideramos la cuadrícula de racionales
positivos:

p

q
(p ∈ N, q ∈ N),

y recorrámosla por diagonales según p + q = 1, 2, 3, . . . , omitiendo las fracciones no
reducidas (es decir, sólo aceptamos p/q con mcd(p, q) = 1).

1
1

2
1

3
1

4
1

5
1

1
2

2
2

3
2

4
2

5
2

1
3

2
3

3
3

4
3

5
3

1
4

2
4

3
4

4
4

5
4

1
5

2
5

3
5

4
5

5
5

×

El procedimiento enumera cada racional una única vez, de modo que obtenemos una
biyección. Luego, repetimos este procedimiento con los enteros negativos y los racionales
negativos, y relacionamos el 0 consigo mismo.

Concluimos que #Q = #Z = ℵ0. ■

Es posible demostrar, aunque no lo haremos en este curso, que si un conjunto X es infinito
y numerable, entonces la existencia de una aplicación inyectiva X → N es suficiente para
garantizar la existencia de una biyección X ↔ N.

Proposición 1.31. Todo conjunto numerable es finito o equinumeroso a N.
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Nos centramos ahora en probar la existencia de conjuntos no numerables. El ejemplo más
importante es R, pero tenemos multitud de ellos: ningún intervalo abierto de R lo es.

Proposición 1.32. #(0, 1) = #(−1, 1) = #R.

Demostración

Esta demostración no se vio en clase.

Por un lado, es fácil comprobar que f : (0, 1)→ (−1, 1) dada por f(x) = 2x− 1 es una
biyección entre (0, 1) y (−1, 1), cuya inversa es f−1(y) = y+1

2 . Esto nos da la primera
igualdad.

Por otro lado, consideramos

φ : (−1, 1) −→ R, φ(x) = x

1− |x| .

Es fácil comprobar que φ es biyectiva y que su inversa es

φ−1 : R −→ (−1, 1), φ−1(y) = y

1 + |y| .

Por tanto, #(−1, 1) = #R. ■

Proposición 1.33. R no es numerable.

Demostración

Esta demostración no se vio en clase.

La Proposición 1.32 nos dice que la cardinalidad de R es igual a la del intervalo (0, 1),
así que basta comprobar que este no es numerable. Supongamos, por absurdo, que
(0, 1) es numerable y enumeramos sus elementos mediante su única expansión decimal
sin 9 periódicos:

x1 = 0.a11a12a13 . . . ,

x2 = 0.a21a22a23 . . . ,

x3 = 0.a31a32a33 . . . ,

...

con aij ∈ {0, 1, . . . , 9}. Definimos un número real tomando la diagonal de las expresiones
decimales anteriores y sumándole uno:

x = 0.b1b2b3 . . . , con bi =
{
aii + 1 si aii < 9,
0 si aii = 9.

Claramente x ∈ (0, 1), por lo que x = xk para algún k ∈ N. Pero, por construcción, el
k−ésimo decimal de x y el de xk son diferentes, lo cual contradice la hipótesis de que
(0, 1) es numerable. ■
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Otro ejemplo de conjunto no numerable será el conjunto de todos los subconjuntos de N, al
que llamamos partes de N. Esto es consecuencia de la Proposición 1.31, junto a la siguiente
observación:

Proposición 1.34. Si P(A) denota el conjunto de todos los subconjuntos de un conjunto A,
entonces ninguna aplicación f : A→ P(A) puede ser sobreyectiva.

Demostración

Esta demostración no se vio en clase.

Sea f : A → P(A) una aplicación. Para cada a ∈ A podemos preguntarnos si a
pertenece o no al conjunto f(a). Con esa idea construimos el conjunto

B = { a ∈ A : a /∈ f(a) }.

Veamos que B no puede ser imagen de ningún elemento de A, es decir, f(a) ̸= B para
todo a ∈ A. Razonamos como sigue:

Si a ∈ B, entonces por definición a /∈ f(a), así que f(a) ̸= B.
Si a /∈ B, entonces por definición a ∈ f(a), y de nuevo f(a) ̸= B.

En ambos casos obtenemos que f(a) ̸= B para todo a ∈ A. Por tanto, el conjunto B
no está en la imagen de f . ■

Enunciamos sin demostrar el siguiente resultado, pues requiere de herramientas que escapan a
los contenidos de este tema.

Proposición 1.35. #R = #P(N) = 2ℵ0 . Este cardinal se conoce como cardinal del continuo.

La Hipótesis del Continuo (HC), formulada por Georg Cantor, afirma que no
existe ningún conjunto cuya cardinalidad sea estrictamente mayor que la de N pero
estrictamente menor que la de R. Es decir, la HC dice que

card(R) = ℵ1,

donde ℵ1 es el siguiente cardinal inmediatamente posterior a ℵ0 = card(N).

Un resultado fundamental de la teoría de conjuntos es que la HC es indecidible: ni
puede probarse ni refutarse a partir de los axiomas usuales de la teoría de conjuntos
(los axiomas de Zermelo–Fraenkel con el Axioma de Elección, ZFC). Esto significa que
existen dos teorías matemáticas igualmente coherentes: ZFC + HC y ZFC + ¬HC.
Por tanto, según se adopte una u otra convención, se obtiene una visión distinta de la
jerarquía de los conjuntos infinitos. En cualquier caso, estos resultados muestran los
límites de lo que puede alcanzarse mediante la deducción axiomática.
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Anexos del capítulo

1.A Resolución de inecuaciones con valor absoluto

Ejemplo

Problema. Dado y ∈ R, hallar los valores de x ∈ R tales que |x+ 8| = |3x− y|.
Resolución. Por definición de valor absoluto, equivale a resolver dos ecuaciones y unir
sus conjuntos de soluciones:

x+ 8 = 3x− y ⇒ x = y + 8
2 ,

x+ 8 = −(3x− y) = y − 3x ⇒ x = y − 8
4 .

(1.1)

Ejemplo

Problema. Dado y ≥ 0, encontrar los valores de x tales que |x− 3| ≤ y.
Resolución. −y ≤ x− 3 ≤ y ⇐⇒ 3− y ≤ x ≤ 3 + y. Es decir,

{x ∈ R : |x− 3| ≤ y} = [ 3− y, 3 + y ].

(Son los puntos cuya distancia al 3 es menor o igual que y.)

Ejemplo

Problema. Resolver |x− 1|+ |x− 2| > 1 para x ∈ R.
Resolución. Estudiamos la inecuación por tramos:

x ≤ 1 : |x− 1| = 1− x, |x− 2| = 2− x ⇒ 3− 2x > 1 ⇐⇒ x < 1,
1 ≤ x ≤ 2 : |x− 1| = x− 1, |x− 2| = 2− x ⇒ 1 > 1 (no hay soluciones),
x ≥ 2 : |x− 1| = x− 1, |x− 2| = x− 2 ⇒ 2x− 3 > 1 ⇐⇒ x > 2.

Solución:
(−∞, 1) ∪ (2,∞).

La función f(x) = |x− 1|+ |x− 2| es lineal a trozos, así que también podemos recurrir
a una representación geométrica de su gráfica:
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x

y
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x = 1 x = 2

f(x) = |x− 1|+ |x− 2|



Capítulo 2

Sucesiones de números reales

En este tema aparece por primera vez una de las ideas centrales del Análisis Matemático: la
convergencia. Nos centraremos primero en la convergencia de sucesiones de números reales, que
más adelante servirá como herramienta esencial en el estudio de las funciones reales de variable
real.

Intuitivamente, una sucesión de números reales es una lista ordenada de números reales indexada
en los naturales:

{x1, x2, x3, . . . , xn, . . . }

Definición 2.1. Una sucesión es una aplicación

S : N→ R, n 7→ S(n) = xn.

A menudo identificamos la sucesión con su imagen S(N) = {xn : n ∈ N}, a la que denotamos
{xn}n∈N o simplemente {xn} si no hay lugar a confusión. La principal ventaja de esta notación
es su brevedad: por ejemplo, la sucesión { 1

n} es la aplicación S : N→ R tal que S(n) = 1
n para

todo n ∈ N, pero escribiendo { 1
n} ya sabemos a qué sucesión nos referimos.

Si {xn} es una sucesión, llamamos al n-ésimo término xn el término general de la sucesión,
pues nos permite reconstruirla completamente. En algunos casos, xn viene dado mediante una
fórmula recursiva.

Ejemplos:

(1) xn = n− 1
n+ 1 ∀n ∈ N ⇒ {xn} =

{
0, 1

3 ,
1
2 ,

3
5 , . . .

}
.

(2) x1 = 1, xn = 1
1 + xn−1

∀n ≥ 2 ⇒ {xn} =
{

1, 1
2 ,

2
3 ,

3
5 , . . .

}
.

(3) (Sucesión de Fibonacci) x1 = 1, x2 = 1, xn = xn−1 + xn−2 ∀n ≥ 3,
⇒ {xn} = {1, 1, 2, 3, 5, 8, 13, . . . }.

La sucesión de Fibonacci y la razón áurea: La sucesión de Fibonacci se define
mediante la recurrencia

xn = xn−1 + xn−2, n ≥ 3, con x1 = 1 y x2 = 1.

24
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El término general xn puede expresarse en función de n gracias a la fórmula de Binet:

an = 1√
5

(
φn −

(
− 1
φ

)n)
,

donde φ es la razón áurea, que satisface φ2 − φ− 1 = 0.

Idea de la demostración: buscamos soluciones de la forma xn = rn, con r > 0.
Sustituyendo en la recurrencia se obtiene

rn = rn−1 + rn−2 ⇒ r2 = r + 1.

La llamada ecuación característica r2 − r − 1 = 0 tiene por soluciones

φ = 1 +
√

5
2 , ψ = 1−

√
5

2 = − 1
φ
.

Puede verse (con herramientas que escapan a los contenidos de este curso) que la
solución general de la recurrencia es una combinación lineal

xn = αφn + βψn, α, β ∈ R.

Imponiendo las condiciones iniciales x1 = 1, x2 = 1, podemos determinar α y β:

an = 1√
5

(φn − ψn) .

2.1 Sucesiones convergentes
Definición 2.2. Decimos que una sucesión {xn} está acotada cuando su imagen
{x1, x2, . . . , xn, . . . } es un subconjunto acotado de R. Equivalentemente, si existe M > 0 tal que

|xn| ≤M ∀n ∈ N ( M no depende de n ).

Ejemplo

Problema. Demostrar que la sucesión
{

1 + (−1)n

n

}
= {0, 3

2 ,
2
3 ,

5
4 , . . . } es acotada.

Resolución. Usando las propiedades del valor absoluto, podemos ver que

|xn| =
∣∣∣∣1 + (−1)n

n

∣∣∣∣ ≤ 1 +
∣∣∣∣(−1)n

n

∣∣∣∣ = 1 + 1
n
≤ 2 ∀n ∈ N.

La siguiente definición es una de las más importantes en matemáticas, y también una de las
más difíciles de asimilar para quienes acaban de iniciarse en esta disciplina. La enunciamos
formalmente, y después haremos comentarios con la esperanza de facilitar su comprensión.

Definición 2.3. Sea {xn} una sucesión y L ∈ R. Decimos que {xn} converge a L si:

∀ε > 0 ∃ n0 ∈ N tal que [n ≥ n0 ⇒ |xn − L| < ε] .

En tal caso, se dice que L es el límite de {xn} y escribimos

ĺım
n→+∞

xn = L, o bien {xn} → L (n→ +∞).
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Conviene subrayar que el número natural n0 que aparece en la definición depende casi siempre
del ε > 0 considerado. Para probar que {xn} → L hay que dar una regla que, a cada ε > 0, le
asigne un número natural n0 tal que se cumpla |xn − L| < ε siempre que n ≥ n0.

La condición |xn − L| < ε es más estricta cuanto más pequeño sea ε, y equivale a
L− ε < xn < L+ ε.

En otras palabras, por muy pequeño que sea ε, el intervalo (L− ε, L+ ε) contiene a todos los
términos de la sucesión a partir de cierto punto.

Interpretación gráfica:

L es el límite de {xn} si, por pequeño que sea ε > 0, existe un n0 tal que todos los
términos de la sucesión con n ≥ n0 quedan dentro del intervalo (L− ε, L+ ε).

0

(−ε, ε)

1

Desde el punto de vista geométrico, la desigualdad |xn−L| < ε expresa que la distancia
entre xn y L en la recta real es menor que ε. De este modo, la convergencia {xn} → L
significa que podemos acercar los términos de la sucesión a L tanto como queramos,
basta con tomar n suficientemente grande (dependiendo de ε). Así, los términos de la
sucesión se aproximan a L de forma cada vez más precisa.

Definición 2.4. Decimos que {xn} es convergente cuando tiene un límite L ∈ R.

Proposición 2.5. El límite de una sucesión, si existe, es único.

Demostración

Supongamos que {xn} → L1 y {xn} → L2, y veamos que necesariamente se tiene
L1 = L2. Sea ε > 0. Por la definición de convergencia, existen m1,m2 ∈ N tales que

|xn − L1| < ε para todo n ≥ m1, |xn − L2| < ε para todo n ≥ m2.

Tomando n ≥ m = máx{m1,m2}, se tiene

|L1 − L2| = |L1 − xn + xn − L2| ≤ |L1 − xn|+ |xn − L2| < ε+ ε = 2ε.

Como ε > 0 es arbitrario, la propiedad arquimediana nos permite concluir que |L1 −
L2| ≤ 0, lo cual implica que |L1 − L2| = 0, es decir, L1 = L2. ■

Ejemplo

Problema. Demostrar que la sucesión {1/n} converge a L = 0.
Resolución. Sea ε > 0. Por la propiedad arquimediana, existe m ∈ N tal que m > 1/ε.
Entonces, para todo n ≥ m se cumple∣∣ 1

n − 0
∣∣ = 1

n ≤
1
m < ε.
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Ejemplo

Problema. Probar que la sucesión {n} no es convergente.
Resolución. Supongamos, por contradicción, que {n} → L para algún L ∈ R. Toma-
mos ε = 1. Entonces existiría m ∈ N tal que para todo n ≥ m,

|n− L| < 1 ⇒ n < L+ 1.

Esto implica que L + 1 sería un mayorante de N, lo cual contradice la propiedad
arquimediana. Por tanto, {n} no converge.

Proposición 2.6. Si {xn} es convergente, entonces {xn} está acotada.

Demostración

Sea {xn} → L. Por la definición de convergencia, existe m ∈ N tal que

|xn − L| < 1 para todo n ≥ m.

Entonces, para n ≥ m,

|xn| ≤ |xn − L|+ |L| < 1 + |L|.

Por otra parte, el conjunto {|xn| : n < m} tiene máximo por ser finito. Sea pues
M = máx{|xn| : n < m}, que depende de m pero no de n. En consecuencia,

|xn| ≤ máx{ 1 + |L|, M} ∀n ∈ N,

y la sucesión {xn} está acotada. ■

La implicación recíproca es falsa: la sucesión {(−1)n} está acotada pero no es convergente.

Idea útil (colas acotadas). Si para cierto m ∈ N el conjunto {xn : n ≥ m} es
acotado, entonces la sucesión completa {xn} es acotada. En efecto, si |xn| ≤M1 para
n ≥ m y M2 = máx{|x1|, . . . , |xm−1|}, entonces

|xn| ≤ máx{M1,M2} ∀n ∈ N.

La sucesión (−1)n no converge, pero al fijarnos solo en sus términos de índice par o, alternati-
vamente, en los de índice impar, obtenemos sucesiones que sí lo hacen. Este ejemplo muestra
la idea de que, seleccionando ciertos términos de una sucesión, podemos construir una nueva,
llamada subsucesión o sucesión parcial de la original.

Definición 2.7. Sea S : N → R una sucesión y sea σ : N → N una aplicación estrictamente
creciente, esto es, para n,m ∈ N con n < m se tiene σ(n) < σ(m). Llamamos a la sucesión
S ◦ σ : N→ R, definida por n 7→ S(σ(n)), una subsucesión o sucesión parcial de S.

Si S = {xn}, entonces denotamos {xσ(n)} a la subsucesión.



Capítulo 2. Sucesiones de números reales 28

Ejemplo:

Las aplicaciones n 7→ 2n, n 7→ 2n − 1 y n 7→ 2n son estrictamente crecientes, lo que
nos da tres subsucesiones notables:

{x2n} = {x2, x4, x6, . . .} (subsucesión de los términos en posición par),
{x2n−1} = {x1, x3, x5, . . .} (subsucesión de los términos en posición impar),
{x2n} = {x2, x4, x8, . . .} (subsucesión de los términos en posición potencia de 2).

Vemos ahora que la convergencia de una sucesión implica la convergencia de todas sus parciales.

Proposición 2.8. Si {xn} → L y {xσ(n)} es una subsucesión, entonces {xσ(n)} → L.

Lema 2.9. Si σ : N→ N es estrictamente creciente, entonces σ(n) ≥ n para todo n ∈ N.

Demostración

Procedemos por inducción. Para n = 1, como σ(1) ∈ N, se tiene necesariamente
σ(1) ≥ 1. Supongamos ahora que σ(n) ≥ n. Como σ es estrictamente creciente, se
cumple

σ(n+ 1) > σ(n) ≥ n,

luego σ(n+ 1) ≥ n+ 1. Por inducción, concluimos que σ(n) ≥ n para todo n ∈ N. ■

Demostración de la Proposición 2.8

Sea ε > 0. Como {xn} → L, existe m ∈ N tal que

|xn − L| < ε para todo n ≥ m.

Además, por el Lema 2.9, si n ≥ m entonces

σ(n) ≥ n ≥ m.

Por tanto, para n ≥ m se verifica

|xσ(n) − L| < ε.

Nótese que para cada ε > 0 podemos usar el mismo m que proporciona la convergencia
de la sucesión de partida. ■

Como consecuencia de este resultado y de la unicidad del límite, si existen dos subsucesiones
tales que

{xσ1(n)} → L1, {xσ2(n)} → L2, L1 ̸= L2,

entonces {xn} no tiene límite.
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Ejemplo

Problema. Estudiar la convergencia de {xn} = {2 + (−1)n}.
Resolución. Estudiemos las subsucesiones:

{x2n} = {2 + (−1)2n} = {3, 3, 3, . . . } ⇒ {x2n} → 3,

{x2n−1} = {2 + (−1)2n−1} = {1, 1, 1, . . . } ⇒ {x2n−1} → 1.

Dado que los límites de las dos subsucesiones difieren, concluimos que {xn} no tiene
límite.

En general, la convergencia de unas pocas subsucesiones de {xn} a un mismo límite no implica
que {xn} sea convergente o que tenga el mismo límite. Basta pensar en una sucesión del tipo

{xn} =


0 si n es potencia de 2
0 si n es potencia de 3
n en otro caso

= {1, 0, 0, 0, 5, 6, 7, 0, 0, 10, . . .}.

Es fácil comprobar que {x2n} y {x3n} convergen a 0, pero {xn} no es convergente.

Sin embargo, existen excepciones notables que podemos utilizar:

Ejercicio: Sea {xn} una sucesión. Si existe L ∈ R tal que {x2n} → L y {x2n−1} → L,
entonces {xn} → L.

Recogemos en el siguiente resultado las principales propiedades de las operaciones que podemos
realizar con sucesiones convergentes, que serán reglas básicas para el cálculo de límites.

Proposición 2.10. Sean {xn}, {yn} sucesiones de números reales y L,L1, L2 ∈ R.

(1) {xn} → L ⇐⇒ {|xn − L|} → 0. En particular, {xn} → 0 ⇐⇒ {|xn|} → 0.

(2) Si {xn} → L, entonces {|xn|} → |L|.

(3) (Suma) Si {xn} → L1 y {yn} → L2, entonces {xn + yn} → L1 + L2.

(4) Si {xn} está acotada e {yn} → 0, entonces {xnyn} → 0.

(5) (Producto) Si {xn} → L1 y {yn} → L2, entonces {xnyn} → L1L2.

(6) (Inverso) Si xn ∈ R∗ para todo n y {xn} → L ∈ R∗, entonces {1/xn} → 1/L.

(7) (Cociente) Si {yn} → L2 y {xn} → L1 ̸= 0, entonces {yn/xn} → L2/L1.

Demostración

(1) Es inmediato de la definición de límite: {xn} → L significa que |xn − L| → 0.
(2) Por la desigualdad triangular inversa, se cumple

||xn| − |L|| ≤ |xn − L|.

Si el segundo tiende a 0, también lo hace el primero, y por tanto |xn| → |L|. El
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recíproco es falso (ejemplo: xn = (−1)n).
(3) Si {xn} → L1 y {yn} → L2, dado ε > 0 se encuentran m1,m2 ∈ N tales que, si

n ≥ máx{m1,m2}, entonces

|xn − L1| < ε/2 y |yn − L2| < ε/2

Entonces
|(xn + yn)− (L1 + L2)| ≤ |xn − L1|+ |yn − L2| < ε.

(4) Si {xn} está acotada, existe K ≥ 0 tal que |xn| ≤ K para todo n ∈ N. Dado que
{yn} → 0, entonces existe un m ∈ N tal que, para n ≥ m, se cumple |yn| < ε/K.
Por tanto, si n ≥ m:

|xnyn| ≤ K|yn| < ε.

Esto demuestra que {xnyn} → 0.
(5) Para el producto, escribimos

xnyn − L1L2 = (xn − L1)(yn − L2) + (xn − L1)L2 + (yn − L2)L1.

El primer término tiende a 0 por el punto anterior (producto de acotada y conver-
gente a 0), y los otros dos tienden a 0 directamente. Concluimos xnyn → L1L2.

(6) Puesto que ∣∣∣∣ 1
xn
− 1
L

∣∣∣∣ = |xn − L|
|xn||L|

,

bastará ver que 1/xn es acotada y aplicar el punto (6). En efecto, dado que
{xn} → L ̸= 0, podemos tomar ε = |L| /2 > 0 para encontrar un m ∈ N tal que, si
n ≥ m, entonces |xn − L| < |L| /2. Esto nos da:

|xn| = |L− (L− xn)| ≥ ||L| − |xn − L|| = |L| − |xn − L|

≥ |L| − |L|2 = |L|2 .

Tomando inversos, resulta
1
|xn|

≤ 2
|L|

n ≥ m,

lo cual nos dice que {1/xn} es acotada.
(7) Finalmente, {yn/xn} = {yn} · {1/xn} y aplicando los resultados de producto e

inverso obtenemos yn/xn → L2/L1.
■

Ejemplo

Problema. Estudiar la convergencia de la sucesión

an = n2 − n
2− n2 .

Resolución. Hemos visto que la sucesión n no converge, por lo que en principio no
podemos usar directamente las reglas anteriores. Para sortear el problema, dividimos
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numerador y denominador por n2:

n2 − n
2− n2 =

1− 1
n

2
n2 − 1

.

Ahora, cuando n→∞ tenemos

1− 1
n

2
n2 − 1

−→ 1
−1 = −1.

Por tanto, la sucesión converge a −1.

Discutimos a continuación la relación entre la convergencia de sucesiones y el orden de los
números reales. De forma más intuitiva: ¿si conocemos una desigualdad entre los límites de dos
sucesiones convergentes, podemos asegurar desigualdades entre sus términos a partir de cierto
punto? ¿Y viceversa? La respuesta es afirmativa y se recoge en la siguiente proposición.

Proposición 2.11. Sean {xn} → L1 y {yn} → L2 dos sucesiones convergentes.

(1) Si L2 < L1, entonces existe m ∈ N tal que yn < xn para todo n ≥ m.

(2) Si existe m ∈ N tal que xn ≤ yn para todo n ≥ m, entonces L1 ≤ L2.

Demostración

(1) Supongamos que L2 < L1, y sea ε = L1−L2
2 > 0. Por la definición de límite, existen

m1,m2 ∈ N tales que

|xn − L1| < ε para todo n ≥ m1, |yn − L2| < ε para todo n ≥ m2.

Tomando m = máx{m1,m2}, para todo n ≥ m se cumple

yn < L2 + ε = L1+L2
2 = L1 − ε < xn.

(Recuerda que si zn → L, entonces para cada ε > 0 se encuentra un m ∈ N tal que
si n ≥ m, se tiene L− ε < zn < L+ ε.)

(2) Razonemos por reducción al absurdo: si se tuviese L2 < L1, aplicando el resultado
anterior existiría m ∈ N tal que yn < xn para todo n ≥ m. Esto significaría que
xn ≤ yn sólo podría cumplirse en un número finito de índices n, contradiciendo la
hipótesis. Por tanto, necesariamente L1 ≤ L2.

■

Observación importante: Es importante resaltar que la hipótesis estricta xn < yn
para todo n ≥ m no implica L1 < L2. Basta considerar, por ejemplo, xn = 0, yn = 1/n,
donde xn < yn siempre, pero L1 = L2 = 0.

Proposición 2.12 (Teorema del sándwich). Sean {xn}, {yn}, {zn} sucesiones tales que existe
un m ∈ N de forma que xn ≤ yn ≤ zn para todo n ≥ m. Si {xn} → L y {zn} → L, entonces
también {yn} → L.



Capítulo 2. Sucesiones de números reales 32

Demostración

Observamos que el punto (2) de la Proposición 2.11 no puede aplicarse directamente,
puesto que no sabemos si {yn} es convergente. Razonamos de la siguiente manera: dado
ε > 0, existen m1,m2 ∈ N tales que

|xn − L| < ε (n ≥ m1), |zn − L| < ε (n ≥ m2).

Tomando m = máx{m,m1,m2}, para todo n ≥ m tenemos

L− ε < xn ≤ yn ≤ zn < L+ ε.

Por tanto |yn − L| < ε para todo n ≥ m, y concluimos que {yn} → L. ■

Ejemplo

Problema. Probar que

xn = (−1)n n
n2 + 1 converge a 0.

Resolución. Observamos primero que

0 ≤ |xn| =
n

n2 + 1 ≤
n

n2 = 1
n
,

ya que n2 + 1 ≥ n2 para todo n ∈ N. Como { 1
n} → 0, del teorema del sándwich (con

{xn} = {0} y {zn} = {1/n}) se sigue que

|xn| → 0 =⇒ xn → 0.

Ejemplo

Problema. (Hoja 2, ejercicio 3) Calcular

ĺım
n→+∞

n∑
k=1

n+ k

n2 + k
.

Resolución. Para cada k se tiene n2 ≤ n2 + k ≤ n2 + n. Cuando el denominador es
mayor, la fracción es menor, y viceversa, de modo que∑n

k=1(n+ k)
n2 + n

≤
n∑
k=1

n+ k

n2 + k
≤
∑n
k=1(n+ k)

n2 .

Calculamos la suma del numerador:
n∑
k=1

(n+ k) = n · n+
n∑
k=1

k = n2 + n(n+ 1)
2 = 3

2 n
2 + 1

2 n.

Sustituyendo:
3
2 ←

3
2 n

2 + 1
2 n

n2 + n
≤

n∑
k=1

n+ k

n2 + k
≤

3
2 n

2 + 1
2 n

n2 → 3
2 .
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Por el criterio del sándwich,

ĺım
n→+∞

n∑
k=1

n+ k

n2 + k
= 3

2 .

Concluimos esta sección viendo que el supremo y el ínfimo de un conjunto A son puntos de R a
los que se puede llegar mediante sucesiones de elementos de A.

Proposición 2.13. Sea A ⊂ R un conjunto no vacío.

(1) Si A está mayorado, existe una sucesión {xn} de elementos de A tal que {xn} → supA.

(2) Si A está minorado, existe una sucesión {yn} de elementos de A tal que {yn} → ı́nf A.

Demostración de (1)

Supongamos que A está mayorado y sea s = supA. Para cada n ∈ N, como s− 1
n no

es cota superior de A, existe xn ∈ A verificando

s− 1
n < xn ≤ s.

Así obtenemos una sucesión {xn} ⊂ A que converge a s usando el Teorema del sándwich.
El caso del ínfimo se razona de manera análoga. ■

2.2 Sucesiones monótonas
Vamos a introducir ahora una propiedad fundamental de las sucesiones: la monotonía. Veremos
que, si una sucesión es monótona y está acotada, necesariamente converge. Este hecho propor-
ciona un criterio muy útil para estudiar la convergencia de sucesiones sin necesidad de calcular
explícitamente su límite.

A partir de aquí deduciremos el teorema de Bolzano–Weierstrass, que constituye uno de los
resultados más relevantes sobre sucesiones, y que además conduce al teorema de completitud de
R, ofreciendo así una caracterización precisa de las sucesiones convergentes.

Definición 2.14. Se dice que una sucesión {xn} es:

Creciente si xn ≤ xn+1 para todo n ∈ N.

Decreciente si xn ≥ xn+1 para todo n ∈ N.

Monótona si es creciente o decreciente.

Una sucesión constante es a la vez creciente y decreciente. Las sucesiones {n} y {−1/n} son
crecientes; {−n} y {1/n} son decrecientes. La sucesión {(−1)n} no es monótona. Además, {xn}
es decreciente ⇐⇒ {−xn} es creciente, por lo que podremos reducirnos a considerar sucesiones
crecientes cuando demostremos propiedades relacionadas con la monotonía.

Proposición 2.15. Toda sucesión monótona y acotada es convergente. Más precisamente:

(i) Si {xn} es creciente y mayorada, entonces {xn} → sup{xk : k ∈ N}.

(ii) Si {xn} es decreciente y minorada, entonces {xn} → ı́nf{xk : k ∈ N}.
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Demostración

Supongamos que {xn} es creciente y mayorada y sea β = sup{xk : k ∈ N}. Dado ε > 0,
por la definición de supremo existe m ∈ N con β − ε

2 ≤ xm ≤ β. Como la sucesión es
creciente, para todo n ≥ m:

β − ε < β − ε

2 ≤ xm ≤ xn ≤ β < β + ε,

de donde sigue que |xn − β| < ε y por tanto xn → β. El caso decreciente/minorada es
análogo, o bien se aplica lo anterior a {−xn}. ■

Ejemplo: Para x ∈ R con |x| < 1, se tiene {xn} → 0.

Sea y = |x| ∈ [0, 1). Como |xn| = |x|n = yn y 0 ≤ yn+1 ≤ yn para todo n, la sucesión
{yn} es decreciente y minorada, luego converge. Si {yn} → L, también {yn+1} → L
por ser una subsucesión, y de la relación yn+1 = yn · y obtenemos que L = Ly.

Como y ̸= 1, se deduce L = 0.

Entonces, {|xn|} → 0, lo que implica que {xn} → 0.

Observación: Si |x| > 1, es fácil ver que {xn} no está acotada, por lo que no puede
ser convergente. El caso |x| = 1 es sobradamente conocido.

Ejemplo

Problema. Sea {an} una sucesión con a1 > 3 y an+1 =
√

2an + 3. Demostrar que es
convergente y calcular su límite.
Resolución. (1) En primer lugar, veamos que {an} así definida es una sucesión
minorada. Para ello, probamos por inducción que an > 3 para todo n.
La etapa base es inmediata, ya que a1 > 3. Supongamos ahora que an > 3 para algún
n ∈ N. Entonces

an+1 =
√

2an + 3 >
√

2 · 3 + 3 =
√

9 = 3.
Queda an > 3 para todo n.
(2) Comprobemos ahora que {an} es monótona decreciente. Veamos directamente
que an+1 < an para todo n. Como an > 3 > 0 para todo n ∈ N, la desigualdad
an+1 < an equivale a

√
2an + 3 < an ⇐⇒ 2an + 3 < a2

n ⇐⇒ a2
n − 2an − 3 > 0.

El polinomio p(x) = x2 − 2x− 3 tiene raíces −1 y 3, y p(x) > 0 para x < −1 o x > 3.
Como ya sabemos que an > 3, se cumple p(an) > 0 y por tanto an+1 < an.
(3) Convergencia y límite. La sucesión es decreciente y minorada por 3, luego es
convergente. Sea L = ĺımn→+∞ an. Como {an+1} es una subsucesión de {an}, también
se tiene {an+1} → L. Tenemos entonces la igualdad:

L2 = 2L+ 3 ⇐⇒ (L− 3)(L+ 1) = 0.

Como an > 3 para todo n, no puede tenerse L = −1, por lo que se deduce L = 3.
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x

y

−1 3

> 0

< 0

> 0

Las sucesiones monótonas aparecen con mucha más frecuencia de lo que podría parecer. El
siguiente resultado lo pone de manifiesto y sirve de paso previo para el teorema central sobre
convergencia de sucesiones reales.

Lema 2.16. Toda sucesión de números reales admite una sucesión parcial monótona.

Demostración

Sea {xn} una sucesión de números reales y consideremos el conjunto

A = {n ∈ N : xn ≥ xn+k ∀ k ∈ N },

que detecta los términos que son mayores o iguales que todos los que les siguen.
Distinguimos dos casos:

(1) Supongamos que A es infinito. Empezamos viendo que podemos construir una
aplicación estrictamente creciente σ : N→ A. Esto es, que podemos numerar los
elementos de A de forma creciente.

Como todo subconjunto de N tiene mínimo, podemos definir σ(1) = mı́nA. Ahora,
daremos una fórmula recursiva que nos permita obtener σ(n+ 1) a partir de σ(n):

σ(n+ 1) = mı́n {a ∈ A : a > σ(n)}︸ ︷︷ ︸
̸=∅ porque A es infinito

.

La sucesión {xσ(n)} es parcial de {xn}, y como σ(n) ∈ A se tiene xσ(n) ≥ xσ(n)+k
para todo k ∈ N. Tomando k = σ(n+ 1)− σ(n) obtenemos xσ(n) ≥ xσ(n+1), luego
{xσ(n)} es decreciente.

(2) Si A es finito (posiblemente A = ∅), entonces existe m ∈ N tal que

A ⊂ {n ∈ N : n < m}.

Intuitivamente, a partir del índice m siempre aparece más adelante un término
mayor, lo que permite construir una sucesión parcial creciente.
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Definimos por inducción una aplicación σ : N → {n ∈ N : n ≥ m} así: tomamos
σ(1) = m y, dado n ≥ 2, tomamos

σ(n+ 1) = σ(n) + mı́n{ k ∈ N : xσ(n)+k > xσ(n)}.

Entonces σ(n+ 1) > σ(n) ≥ m y xσ(n) < xσ(n+1), por lo que {xσ(n)} es creciente.

En cualquiera de los dos casos obtenemos una sucesión parcial monótona de {xn}. ■

Teorema 2.17 (Teorema de Bolzano–Weierstrass). Toda sucesión acotada de números reales
admite una sucesión parcial convergente.

Demostración

Sea {xn} una sucesión acotada. Por el lema anterior, existe una sucesión parcial
monótona {xσ(n)}. Al ser {xn} acotada, existe K ∈ R tal que |xn| ≤ K para todo
n ∈ N, y por tanto |xσ(n)| ≤ K para todo n. Así, {xσ(n)} es monótona y acotada, luego
es convergente por el resultado previo. ■

Nota: Hasta ahora, hemos visto la siguiente cadena de implicaciones:

{xn} monótona y acotada
⇓

{xn} convergente
⇓

{xn} acotada
⇓

{xn} admite una subsucesión convergente.

Sin embargo, ninguna de estas implicaciones es reversible:

(1) Para ver que (iv) ̸⇒ (iii) basta tomar

xn = n

(1 + (−1)n

2

)
, n ∈ N,

ya que x2n−1 = 0 y x2n = n. Así, {xn} admite una subsucesión convergente y otra
no acotada, por lo que {xn} tampoco está acotada.

(2) Ya se comentó que existen sucesiones acotadas que no convergen, es decir, (iii) ̸⇒
(ii).

(3) Finalmente, la sucesión {(−1)n/n} converge a 0, pero no es monótona, así que
(ii) ̸⇒ (i).

Hasta ahora hemos visto condiciones necesarias (como la acotación) o suficientes (monotonía
junto con acotación) para garantizar la convergencia de una sucesión. Sin embargo, ninguna de
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ellas es a la vez necesaria y suficiente. Nuestro objetivo será encontrar un criterio que permita
decidir si una sucesión es convergente sin necesidad de conocer de antemano su posible límite.

Definición 2.18. Una sucesión {xn} se llama sucesión de Cauchy cuando, para todo ε > 0,
existe m ∈ N tal que

p, q ≥ m =⇒ |xp − xq| < ε.

Es decir, una sucesión de Cauchy es aquella cuyos términos están arbitrariamente cerca unos de
otros para índices suficientemente grandes. Es fácil comprobar que toda sucesión convergente
verifica esta propiedad, pues todos sus términos están tan cerca como se quiera del valor del
límite. Que la afirmación recíproca sea también cierta caracteriza a la completitud de R.

Proposición 2.19 (Completitud de R). Una sucesión de números reales {xn} converge si, y
sólo si, es de Cauchy.

Demostración

Convergente⇒ Cauchy. Supongamos xn → L ∈ R. Dado ε > 0, existe m ∈ N tal que

|xn − L| <
ε

2 para todo n ≥ m.

Entonces, para p, q ≥ m,

|xp − xq| ≤ |xp − L|+ |L− xq| <
ε

2 + ε

2 = ε,

luego {xn} es de Cauchy.

Cauchy⇒ convergente. Sea ahora {xn} una sucesión de Cauchy. Primero probamos
que está acotada. Tomando ε = 1 en la definición de Cauchy, existe m ∈ N tal que

|xp − xq| < 1 para cualesquiera p, q ≥ m.

En particular, con q = m y p = n ≥ m,

|xn| ≤ |xn − xm|+ |xm| < 1 + |xm|,

de modo que {xn} es acotada.
Por el teorema de Bolzano–Weierstrass, existe una sucesión parcial {xσ(n)} que converge
a algún L ∈ R. Veamos que entonces también se tiene {xn} → L.
Sea ε > 0. Como {xn} es de Cauchy, existe m1 ∈ N tal que

p, q ≥ m1 =⇒ |xp − xq| <
ε

2 . (2.1)

Como {xσ(n)} → L, existe m2 ∈ N tal que

n ≥ m2 =⇒ |xσ(n) − L| <
ε

2 . (2.2)

Tomemos m = máx{m1,m2}, y sea n ≥ m. Puesto que σ(n) ≥ n ≥ m, aplicando (2.1)
con p = n y q = σ(n) y luego (2.2), obtenemos

|xn − L| ≤ |xn − xσ(n)|+ |xσ(n) − L| <
ε

2 + ε

2 = ε.

Por tanto, {xn} → L, como queríamos. ■
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Ejemplo

Problema. Consideremos la sucesión definida por

x1 = 2, xn+1 = 1
2

(
xn + 2

xn

)
n ∈ N.

Vamos a demostrar que {xn} es una sucesión de Cauchy en Q que no es convergente.
Resolución.

Comenzamos viendo por inducción que xn ∈ Q para todo n.

El caso n = 1 es claro. Si xn ∈ Q, entonces también 2/xn ∈ Q y su media
aritmética 1

2

(
xn + 2

xn

)
= xn+1 ∈ Q.

Demostremos ahora que se cumplen las estimas
√

2 ≤ xn ≤ 2 para todo n.

Para n = 1 tenemos
√

2 < 2 = x1 ≤ 2. Supongamos que
√

2 ≤ xn ≤ 2 para algún
n ∈ N. Entonces

xn+1 = 1
2

(
xn + 2

xn

)
≤ 1

2

(
2 + 2

xn

)
≤ 1

2

(
2 + 2√

2

)
= 1 +

√
2

2 < 2.

Por otro lado, usando la desigualdad entre las medias aritmética y geométrica,
esto es, a+b

2 ≥
√
ab para todo a, b > 0 (véase la nota al final de este ejemplo), se

tiene

xn+1 = 1
2

(
xn + 2

xn

)
≥
√
xn

2
xn

=
√

2.

Queda probado que
√

2 ≤ xn+1 ≤ 2.

Comprobamos que {xn} es monótona decreciente: como xn ≥
√

2 > 0, se tiene
xn

2 ≥ 2 y

2
xn
≤ xn

2

xn
= xn =⇒ xn+1 = 1

2

(
xn + 2

xn

)
≤ 1

2(xn + xn) = xn.

Por ser {xn} decreciente y minorada, existe L ∈ R, L ≥
√

2, de forma que {xn} → L.
En particular, {xn} es una sucesión de Cauchy.

Por último, calculamos el valor de L. Pasando al límite en la relación de recu-
rrencia,

L = 1
2

(
L+ 2

L

)
=⇒ 2L = L+ 2

L
=⇒ L2 = 2.

Como L ≥
√

2, se obtiene L =
√

2.

Conclusión. {xn} es una sucesión en Q decreciente y acotada, por tanto convergente
en R. Toda sucesión convergente es de Cauchy, y esta noción es independiente del
límite, luego {xn} es una sucesión de Cauchy en Q. Sin embargo, su único límite posible
es
√

2 /∈ Q, luego {xn} no converge en Q.

La desigualdad entre la media aritmética y la geométrica: Sean a, b > 0.
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Claramente, (a− b)2 ≥ 0, lo que nos da

a2 + b2 ≥ 2ab ⇒ a2 + b2 + 2ab ≥ 4ab ⇒ (a+ b)2 ≥ 4ab.

Como a, b > 0, podemos tomar raíces cuadradas para conseguir

a+ b ≥ 2
√
ab ⇒ a+ b

2 ≥
√
ab.

2.3 Sucesiones divergentes
En este curso, llamamos sucesión divergente a cualquier sucesión que no sea convergente. Es
menester señalar que en algunos textos, esta terminología se reserva para un tipo concreto de
sucesiones no convergentes, que son las que tienden a +∞ o −∞.

Definición 2.20. Una sucesión {xn} se dice divergente cuando no es convergente.

Entre las sucesiones divergentes, señalamos los dos tipos más interesantes:

Definición 2.21. Sea {xn} una sucesión de números reales.

Decimos que {xn} diverge a +∞ si, para todo K > 0, existe m ∈ N tal que n ≥ m =⇒
xn > K. En tal caso escribimos {xn} → +∞.

Análogamente, decimos que {xn} diverge a −∞ si, para todo K < 0, existe m ∈ N tal
que n ≥ m =⇒ xn < K. En tal caso escribimos {xn} → −∞.

Conviene insistir en que ∞, +∞ y −∞ son solo símbolos para indicar que una sucesión diverge
hacia los positivos o los negativos. Escribir {xn} → +∞ no significa que la sucesión sea
convergente ni que tenga límite +∞. Las nociones de sucesión convergente y de límite real
no cambian por introducir estas definiciones. Por ello deben evitarse expresiones como “{xn}
converge a +∞” o “ĺımn→+∞ xn = +∞”, que pueden inducir confusión y no aportan claridad.

Estudiamos ahora la relación entre las sucesiones que divergen a ±∞ con los demás tipos de
sucesiones que hemos visto.

Proposición 2.22. Sea {xn} una sucesión y {xσ(n)} una subsucesión de {xn}.

(i) Si {xn} → +∞, entonces {xσ(n)} → +∞.

(ii) Si {xn} → −∞, entonces {xσ(n)} → −∞.

Demostración

(1) Sea K ∈ R. Como {xn} → +∞, existe m ∈ N tal que n ≥ m ⇒ xn > K. La
aplicación σ : N→ N es estrictamente creciente, luego existe n0 ∈ N con σ(n) ≥ m
para todo n ≥ n0. Por tanto, para n ≥ n0 se tiene xσ(n) > K, y queda probado
que {xσ(n)} → +∞.

(2) Si {xn} → −∞, entonces {−xn} → +∞. Aplicando (i) a la sucesión {−xn}
obtenemos {−xσ(n)} → +∞, es decir, {xσ(n)} → −∞.

■
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Proposición 2.23. Si {xn} creciente y no mayorada, entonces {xn} → +∞. De la misma
manera, si {xn} es decreciente y no minorada, entonces {xn} → −∞. Por tanto, toda sucesión
monótona es convergente o tiende a infinito.

Demostración

Si {xn} es creciente y no mayorada, dado K ∈ R, existe m ∈ N tal que xm > K, pero
entonces, para n ≥ m se cumple xn ≥ xm > K, y de aquí {xn} → +∞.

De modo análogo, si {xn} es decreciente y no minorada, entonces {−xn} es creciente y
no mayorada, luego {−xn} → +∞, y por tanto {xn} → −∞. ■

El criterio anterior nos permite dar ejemplos de sucesiones que divergen a ±∞:

Si x ∈ R con x > 1, la sucesión {xn} es creciente y no está mayorada, luego
{xn} → +∞.
Si x < −1, entonces {|xn|} = {|x|n} → +∞. Sin embargo, la sucesión no tiende
ni a +∞ ni a −∞, pues oscila de signo.

Ejemplo

Problema. Demostrar que {
√
n} → +∞.

Resolución. Creciente. Como 0 < n < n + 1, tomando raíces cuadradas queda√
n <
√
n+ 1, luego es creciente.

No mayorada. Razonamos por reducción al absurdo: si existiera M ∈ R tal que√
n ≤ M para todo n ∈ N, entonces n ≤ M2 para todo n ∈ N, lo cual contradice la

propiedad arquimediana.

Por tanto, la sucesión es creciente y no está mayorada; en consecuencia,

{
√
n} −→ +∞.

El siguiente criterio nos permite deducir que una sucesión que diverge a ±∞ comparándola con
otra con el mismo comportamiento. Puede entenderse como un resultado análogo al Teorema
del sándwich para este tipo de sucesiones divergentes.

Proposición 2.24. Sean {xn} y {yn} sucesiones de números reales tales que existe un m ∈ N
de forma que xn ≤ yn para todo n ≥ m. Entonces:

{xn} → +∞ =⇒ {yn} → +∞, {yn} → −∞ =⇒ {xn} → −∞.

Ejemplo

Problema. Consideremos la sucesión

xn =
n∑
k=1

1√
k

=
{

1, 1 + 1√
2
, 1 + 1√

2
+ 1√

3
, . . .

}
.

Demostrar que {xn} → +∞.
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Resolución. Para 1 ≤ k ≤ n se cumple
√
k ≤
√
n, luego

1√
k
≥ 1√

n
.

Sumando para k = 1, . . . , n,

xn =
n∑
k=1

1√
k
≥

n∑
k=1

1√
n

= n · 1√
n

=
√
n.

Como {
√
n} → +∞, por comparación se obtiene {xn} → +∞.

Finalmente, resumimos el álgebra del ±∞ en la siguiente proposición.

Proposición 2.25. Sean {xn} y {yn} sucesiones de números reales.

(1) Si {xn} → +∞ y {yn} está minorada, entonces {xn + yn} → +∞. En particular, la segunda
condición se tiene si {yn} → L o {yn} → +∞.

(2) Si {xn} → −∞ y {yn} está mayorada, entonces {xn+yn} → −∞. En particular, la segunda
condición se tiene si {yn} → L o {yn} → −∞)

(3) Si {xn} → +∞ y existen α > 0 y m ∈ N tales que, para n ≥ m, se cumple yn > α > 0,
entonces {xnyn} → +∞. En particular, la segunda condición se tiene si {yn} → L > 0 o
{yn} → +∞.

(4) Si {xn} → −∞ y existen α > 0 y m ∈ N tales que, para n ≥ m, se cumple yn > α > 0,
entonces {xnyn} → −∞.

(5) Sea xn ̸= 0 para todo n ∈ N. Entonces {xn} → 0⇐⇒
{ 1
|xn|

}
→ +∞.

Demostración

(1) Supongamos {xn} → +∞ y {yn} está minorada. Existe α ∈ R tal que yn ≥ α para
todo n ∈ N. Sea K ∈ R. Como {xn} → +∞, existe m ∈ N tal que n ≥ m =⇒
xn > K − α. Entonces, para n ≥ m, se cumple xn + yn > K − α+ α = K, lo que
prueba que {xn + yn} → +∞.

(2) La demostración es análoga a (1).
(3) Sea K ∈ R. Como {xn} → +∞, existe q ∈ N tal que para todo n ≥ q se

cumple xn > K/α. Definimos p = máx{q,m}. Entonces, para n ≥ p, se tiene
simultáneamente yn > α y xn > K/α, luego

xnyn >
K
α α = K,

lo que prueba que {xnyn} → +∞.
(4) Demostración análoga a (3).
(5) Supongamos que {xn} → 0, y sea K ∈ R+. Como {xn} → 0, existe m ∈ N tal que

n ≥ m =⇒ |xn| < 1
K . Entonces, para n ≥ m se cumple

1
|xn|

> K,
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lo que muestra que { 1
|xn|} → +∞.

Recíprocamente, supongamos que {1/ |xn|} → +∞. Dado ε > 0, tomamos K = 1/ε.
Por hipótesis, existe m ∈ N tal que n ≥ m =⇒ |1/xn| > K = 1/ε. Esto equivale
a |xn| < ε, lo que prueba que {xn} → 0.

■

Las situaciones no contempladas en la discusión anterior se conocen como indeterminaciones,
que es un término que se usa para denotar que no existe un criterio general que nos permita decidir
el comportamiento de la situación en ese caso. Tenemos principalmente dos indeterminaciones,
una para la suma y otra para el producto:

[∞−∞] [0 · ∞] ,

si bien la indeterminación para el producto puede aparecer en dos variantes aparentemente
diferentes: [0 / 0] y [∞/∞].

Es interesante observar que cualquier sucesión puede expresarse en forma de las dos
indeterminaciones mencionadas anteriormente:

Dada una sucesión {zn}, podemos escribir zn = xn + yn, con {xn} → +∞ e
{yn} → −∞. Basta definir xn = zn + |zn| + n e yn = zn − xn, de modo que
xn ≥ n→ +∞ e yn ≤ −n→ −∞.
De igual forma, cualquier sucesión {zn} puede escribirse como zn = xnyn, con
{xn} → +∞ e {yn} → 0. Por ejemplo, tomando xn = n(|zn|+ 1) e yn = zn/xn,
se cumple xn ≥ n→ +∞ y |yn| ≤ 1/n→ 0.

2.4 Criterios de convergencia de sucesiones
El siguiente tema tiene un enfoque práctico, pues presentaremos dos criterios para resolver tipos
concretos de indeterminaciones.

Para las indeterminaciones del tipo [∞/∞], es útil el siguiente criterio ideado por el matemático
austriaco O. Stolz, cuya demostración es altamente técnica y preferimos omitir.

Teorema 2.26 (Criterio de Stolz). Sea {ρn} una sucesión de números positivos, estrictamente
creciente y no mayorada (es decir, 0 < ρn < ρn+1, y {ρn} → +∞).

Entonces, para toda sucesión {xn} y todo L ∈ R ∪ {+∞,−∞}, se tiene{
xn+1 − xn
ρn+1 − ρn

}
−→ L =⇒

{
xn
ρn

}
−→ L.

Ejemplo

Problema. Demostrar que, para cualesquiera x ∈ R con |x| > 1 y p ∈ N,

ĺım
n→∞

np

xn
= 0.
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Resolución. En primer lugar nos damos cuenta de que basta con tratar el caso x > 1,
pues ∣∣∣∣npxn

∣∣∣∣ = np

|x|n

y |x| > 1. Haremos una demostración por inducción en p ∈ N, aplicando el criterio de
Stolz con ρn = xp (que es positiva, estrictamente creciente y no mayorada).

Etapa base p = 1. Tomamos xn = n. Entonces

xn+1 − xn
ρn+1 − ρn

= (n+ 1)− n
xn+1 − xn

= 1
xn(x− 1) −→ 0,

y por Stolz se concluye n

xn
→ 0.

Paso inductivo. Supongamos cierto para un p ∈ N, es decir, n
p

xn
→ 0. Tomamos ahora

xn = np+1. Entonces

xn+1 − xn
ρn+1 − ρn

= (n+ 1)p+1 − np+1

xn+1 − xn
= 1
x− 1 ·

(n+ 1)p+1 − np+1

np
· n

p

xn
.

Usando el binomio de Newton, podemos ver que (n+ 1)p+1 = np+1 + (p+ 1)np +R(n),
donde R(n) es un polinomio de grado < p. Por tanto

ĺım
n→∞

(n+ 1)p+1 − np+1

np
= (p+ 1)np +R(n)

np
= p+ 1.

Por otro lado, el tercer factor tiende a 0 por hipótesis de inducción. Por tanto, el
producto también tiende a 0. Aplicando de nuevo el criterio de Stolz, concluimos que{

np+1

xn

}
→ 0.

Ahora, si {xn} es una sucesión de números reales positivos, vamos a estudiar el comportamiento
de la sucesión { n

√
xn}. Esto anticipa un nuevo tipo de indeterminación, la del tipo [∞0], que

estudiaremos con más atención una vez que hayamos introducido las funciones logaritmo y
exponencial.

Teorema 2.27 (Criterio de la raíz para sucesiones). Sea {xn} una sucesión con xn > 0 para
todo n ∈ N. Entonces, para L ∈ R ∪ {+∞}, se tiene{

xn+1
xn

}
→ L =⇒ { n

√
xn} → L.

Ejemplo

Problema. Probar que n
√
n! −→ +∞.

Resolución. Consideramos xn = n!, con xn > 0. Entonces

xn+1
xn

= (n+ 1)!
n! = n+ 1 −→ +∞.
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Por el criterio de la raíz para sucesiones, concluimos que
n
√
n! −→ +∞.

Nota: n! = n(n− 1) · · · 2 · 1 =
∏k
i=1 k = n · (n− 1)!
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Series

Al estudiar una sucesión de números reales {xn} surge de forma natural una nueva idea: la de
sumar todos sus términos. Para ello podemos considerar las sumas finitas

x1, (x1 + x2), (x1 + x2 + x3), . . . , (x1 + x2 + · · ·+ xn), . . .

Si esta nueva sucesión converge, es plausible interpretar su límite como la suma infinita de los
términos de {xn} a la que queríamos dar sentido.

Definición 3.1. Dada una sucesión de números reales {xn}, la serie de término general {xn}
es la sucesión de sumas parciales

{Sn} =
{

n∑
k=1

xk

}
,

y la denotaremos simplemente
∑
n≥1

xn.

Con esta definición queda claro que las series no son un objeto nuevo; son sucesiones cuyo
término general se obtiene sumando los términos de otra sucesión. Por tanto, podemos hablar
de nociones como convergencia, acotación y monotonía de series simplemente trasladando las
correspondientes definiciones para sucesiones.

Definición 3.2. Decimos que la serie
∑
n≥1 xn es convergente si {Sn} converge; en tal caso

llamamos a su límite la suma de la serie, y lo denotamos por

ĺım
n→∞

Sn =
∞∑
n=1

xn,

que recuerda la idea de que estamos sumando los infinitos términos de la sucesión {xn}.

En el estudio de una serie intervienen dos sucesiones, así que conviene fijar una notación que
indique claramente a cuál nos estamos refiriendo. La sucesión cuyos términos estamos sumando,
{xn}, la llamaremos término general de la serie, y los propios términos de la serie

∑
n≥1 xn

se denotarán las sumas parciales {Sn}. Como ya hemos mencionado, al límite de la serie lo
llamaremos suma de la serie, también para diferenciarlo del posible límite de {xn}, del que
hablaremos enseguida.

Por tanto, si decimos que
∑
n≥1 xn es una serie de términos no-negativos, nos referimos a que

xn ≥ 0 para todo n ∈ N. Esta propiedad se traduce inmediatamente en que la sucesión de sumas
parciales es creciente.

45
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3.1 Ejemplos de series
Acabamos de ver que toda serie es, por definición, una sucesión. Además, el recíproco también
es cierto: cualquier sucesión puede verse como una serie. Por tanto, series y sucesiones no son
más que dos puntos de vista diferentes para estudiar el mismo concepto matemático. La utilidad
del primero quedará de manifiesto más adelante.

Dada una sucesión {yn}, adoptamos por convenio y0 = 0 y definimos

xn = yn − yn−1 ∀n ∈ N.

Entonces

Sn =
n∑
k=1

xk =
n∑
k=1

(yk − yk−1) = y1 + (y2 − y1) + (y3 − y2) + · · · yn = yn ∀n ∈ N.

Así, estudiar la sucesión yn equivale a estudiar la serie
∑
n≥1(yn − yn−1).

Merece la pena dar un nombre a las series cuyo estudio se reduce a considerar una única sucesión
en la forma que hemos discutido anteriormente.

Definición 3.3. Diremos que una serie
∑
n≥1 xn es telescópica si su término general puede

escribirse de la forma
xn = yn+1 − yn ∀n ≥ 1.

para alguna sucesión {yn}. En ese caso, el estudio de
∑
n≥1 xn equivale al de {yn+1 − y1}.

Ejemplo

Problema. Estudiar la convergencia de la serie de Mengoli
∑
n≥1

1
n(n+ 1) .

Resolución. Observamos que

1
n(n+ 1) = 1

n
− 1
n+ 1 .

Por tanto, las sumas parciales son

Sn =
n∑
k=1

(1
k
− 1
k + 1

)
= 1− 1

n+ 1 .

Luego {Sn} → 1 y la serie es convergente con

∞∑
n=1

1
n(n+ 1) = 1.

Si bien series y sucesiones son conceptos equivalentes, muchos de los ejemplos de sucesiones más
importantes que aparecerán en el Análisis Matemático vienen en forma de series. A menudo, no
hay una forma cómoda de obtener una fórmula general para la sucesión de sumas parciales de
una serie, por lo que nos centraremos en la información sobre la serie

∑
n≥1 xn que podamos

obtener a través de su término general {xn}.
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Un primer hecho básico es que, si {xn} no converge a 0, la serie
∑
n≥1 xn no puede ser convergente.

De forma equivalente:

Proposición 3.4. Si la serie
∑
n≥1 xn es convergente, entonces {xn} → 0.

Demostración

Sea Sn =
∑n
k=1 xk la sucesión de sumas parciales. Si la serie converge, entonces

{Sn} → S ∈ R. Para n ≥ 1, podemos escribir

xn+1 = Sn+1 − Sn −→ S − S = 0,

luego {xn} → 0. ■

En términos de sucesiones, tendríamos que necesariamente la sucesión de diferencias {yn −
yn−1} → 0 (o equivalentemente {yn+1 − yn} → 0). Es natural preguntarse por el recíproco, esto
es, si {yn+1 − yn} → 0 implica que {yn} es convergente. Esta es una pregunta interesante sobre
sucesiones que no nos habríamos hecho de no haber adoptado el punto de vista de las series.

Naturalmente, el recíproco es falso: {xn} → 0 no es suficiente para que
∑
n≥1 xn sea convergente.

Veremos enseguida un ejemplo importante.

Proposición 3.5. La serie armónica ∑
n≥1

1
n

diverge positivamente.

Demostración

Sea {Hn} la sucesión de sumas parciales, esto es,

Hn =
n∑
k=1

1
k
.

Como 1
k > 0, la sucesión {Hn} es creciente. Probamos que no está acotada mostrando,

por inducción en n ∈ N, que
H2n ≥ 1 + n

2 .

Para n = 1 es claro:
H2 = 1 + 1

2 = 1 + 1
2 .

Supuesto cierto para n, entonces

H2n+1 = H2n +
2n+1∑

k=2n+1

1
k
≥
(

1 + n

2

)
+ (2 · 2n − 2n) · 1

2n+1 = 1 + n+ 1
2 .

Concluimos que H2n → +∞, por lo que {Hn} no está acotada. Como además es {Hn}
creciente, tenemos también Hn → +∞. ■

Fijado x0 ∈ R, puede interesar que las sumas parciales de una serie arranquen en x0, esto es, en
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n = 0. Denotamos por
∑
n≥0 xn a la serie cuyas sumas parciales son

S̃n =
n−1∑
k=0

xk =
n∑
k=1

xk−1, n ≥ 1.

En vista de la identidad anterior, está claro que
∑
n≥0 xn =

∑
n≥1 xn−1, y se cumple

S̃n+1 = x0 + Sn, n ≥ 1,

de donde es claro que la convergencia de
∑
n≥0 xn equivale a la de

∑
n≥1 xn, y si ambas son

convergentes se tiene además

ĺım
n→∞

S̃n =
∞∑
n=0

xn =
∞∑
n=1

xn−1 = x0 +
∞∑
n=1

xn.

Definición 3.6. Dado a ∈ R, llamamos serie geométrica de razón a a∑
n≥0

an = 1 + a+ a2 + · · ·

cuyo término general es {an}.

Como an → 0 sólo si |a| < 1, una condición necesaria de convergencia es |a| < 1. Vemos
inmediatamente que el recíproco también es cierto:

Proposición 3.7. Si |a| < 1, la serie geométrica de razón a es convergente y

∞∑
n=0

an = 1
1− a.

Demostración

Para n ∈ N y a ≠ 1, la fórmula de la suma de los n primeros términos de una progresión
geométrica es de sobra conocida, y puede demostrarse fácilmente por inducción:

n−1∑
k=0

ak = 1− an

1− a .

Si |a| < 1 entonces {an} → 0, y por tanto

∞∑
n=0

an = ĺım
n→∞

n−1∑
k=0

ak = ĺım
n→∞

1− an

1− a = 1
1− a.

■

También resulta útil poder cortar los primeros términos de una serie. Fijado p ∈ N, la serie∑
n≥p+1 xn no es más que la sucesión de sumas parciales

Ŝn =
p+n∑
k=p+1

xk =
n∑
k=1

xk+p,
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de modo que estamos considerando la serie
∑
n≥1 xn+p. Las sumas parciales de

∑
n≥p+1 xn y∑

n≥1 xn satisfacen la relación

Ŝn =
p+n∑
k=p+1

xk = Sp+n − Sp,

de donde es evidente que
∑
n≥p+1 xn converge si, y sólo si, converge

∑
n≥1 xn, y en tal caso, sus

sumas verifican
∞∑
n=1

xn =
p∑

k=1
xk +

∞∑
n=p+1

xn.

En resumidas cuentas, el carácter de una serie (convergente o divergente) no cambia al
eliminar un número finito de términos.

Ejercicio: Demostrar que si
∑
n≥1 xn es convergente, entonces las colas

∞∑
k=n+1

xk


n∈N

forman una sucesión que converge a 0.

Una sencilla consecuencia del álgebra de sucesiones convergentes nos permite ampliar fácilmente
nuestro catálogo de series convergentes.

Proposición 3.8. Sean
∑
n≥1 xn y

∑
n≥1 yn series convergentes y α, β ∈ R. Entonces la serie∑

n≥1(αxn + βyn) es convergente y

∞∑
n=1

(αxn + βyn) = α
∞∑
n=1

xn + β
∞∑
n=1

yn.

Demostración

Para n ∈ N, definimos

Xn =
n∑
k=1

xk, Yn =
n∑
k=1

yk, Zn =
n∑
k=1

(αxk + βyk) = αXn + βYn.

Como {Xn} y {Yn} convergen, también converge {Zn} y

ĺım
n→∞

Zn = α ĺım
n→∞

Xn + β ĺım
n→∞

Yn.

Esto prueba la convergencia de
∑
n≥1(αxn + βyn) y la identidad anunciada. ■
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Ejemplo

Problema. Demostrar que la siguiente serie es convergente y calcular su suma

∑
n≥1

2n−1 + 3n+1

5n .

Resolución. Por linealidad de las series y la fórmula de la geométrica:

∑
n≥1

2n−1 + 3n+1

5n = 1
5
∑
n≥1

(2
5

)n−1
+9

5
∑
n≥1

(3
5

)n−1
= 1

5 ·
1

1− 2
5

+9
5 ·

1
1− 3

5
= 1

3+9
2 = 29

6 .

3.2 Criterios de convergencia para series de términos no nega-
tivos

En lo que sigue trabajaremos con series de la forma
∑
n≥1 an con an ≥ 0. Este tipo de series

son sucesiones crecientes, ya que Sn+1 = Sn + an+1 ≥ Sn para todo n ∈ N, lo que simplifica su
estudio. De hecho, hemos visto que una sucesión creciente solo puede ser convergente o divergir
a +∞, dependiendo de si está mayorada o no.∑

n≥1
an converge ⇐⇒ {Sn} está mayorada.

Por tanto, de la convergencia de una serie podemos deducir la de muchas otras a las que esta
mayora.

Proposición 3.9 (Criterio de comparación). Sean
∑
n≥1 an y

∑
n≥1 bn dos series con an ≥ 0,

bn ≥ 0. Supongamos que existe p ∈ N tal que an ≤ bn para todo n ≥ p. Entonces,∑
n≥1

bn convergente =⇒
∑
n≥1

an convergente.

Demostración

Por ser
∑
n≥1 bn convergente, está mayorada, es decir, existe M ∈ R tal que

n∑
k=1

bk ≤M ∀n ∈ N.

Sumando término a término la desigualdad 0 < ak+p ≤ bk+p para k = 1, . . . , n, se tiene

n∑
k=1

ak+p ≤
n∑
k=1

bk+p ≤
n+p∑
k=1

bk ≤M.

Al estar mayorada, la serie
∑
n≥1 an+p =

∑
n≥p+1 an es convergente, lo que equivale a

la convergencia de la serie
∑
n≥1 an. ■

Si bien el anterior criterio de comparación tiene utilidad en sí mismo, su principal función es
permitirnos demostrar el siguiente, que es más potente y práctico.
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Proposición 3.10 (Criterio de comparación por paso al límite). Sean an ≥ 0 y bn > 0 para
todo n ∈ N, y supongamos que

ĺım
n→∞

an
bn

= L ≥ 0.

(1) Si L > 0,
∑
n≥1 an converge ⇐⇒

∑
n≥1 bn converge.

(2) Si L = 0 y
∑
n≥1 bn converge =⇒

∑
n≥1 an converge.

Demostración

(1) Tomando ε = L/2, encontramos un n0 ∈ N tal que, para n ≥ n0,∣∣∣an
bn
− L

∣∣∣ < L

2 =⇒ L

2 bn ≤ an ≤
3L
2 bn.

Aplicamos el criterio de comparación entre
∑
n≥1

L
2 bn y

∑
n≥1 an, y luego entre∑

n≥1 an y
∑
n≥1

3L
2 bn, teniendo en cuenta que multiplicar una sucesión por una

constante positiva no afecta a su convergencia.
(2) Tomemos ε = 1. Entonces existe n0 tal que, para n ≥ n0, an

bn
< 1, es decir,

0 ≤ an ≤ bn. Si
∑
n≥1 bn converge, también lo hace

∑
n≥1 an por el primer criterio

de comparación.
■

Nota: Si an > 0 para todo n ∈ N y
{
an
bn

}
→ +∞, entonces

{
bn
an

}
→ 0. Aplicando el

punto (2) intercambiando los papeles de
∑
n≥1 an y

∑
n≥1 bn, tenemos:

si
∑
n≥1

an converge =⇒
∑
n≥1

bn converge.

Por contrarrecíproco, esta afirmación es equivalente a

si
∑
n≥1

bn diverge =⇒
∑
n≥1

an diverge.

Ejemplo

Problema. Estudiar la convergencia de la serie∑
n≥1

n

n2 + 3n+ 4 .

Resolución. Tomamos bn = 1
n

. Entonces

an
bn

=
n

n2+3n+4
1
n

= n2

n2 + 3n+ 4 −→ 1 (> 0).

Por el criterio de comparación por paso al límite, la serie dada converge si y sólo si lo
hace

∑
n≥1

1
n , que es la armónica y diverge. Luego

∑
n≥1

n
n2+3n+4 diverge positivamente.
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Ejemplo

Problema. Para p ∈ N con p ≥ 2, la serie armónica con exponente p es convergente.
∑
n≥1

1
np
.

Resolución. En primer lugar, veamos que podemos reducirnos al caso n = 2: si p ≥ 2
y n ∈ N, entonces de np ≥ n2 se sigue que

0 < 1
np
≤ 1
n2 .

Por el criterio de comparación, si
∑
n≥1

1
n2 converge entonces también lo harán las de

exponente p para todo p ≥ 2.

Sea bn = 1
n(n+ 1). Sabemos que la serie de Mengoli

∑
n≥1 bn es convergente, y se

verifica
an
bn

=
1
n2
1

n(n+1)
= n(n+ 1)

n2 = 1 + 1
n
−→ 1 (> 0).

Por el criterio de comparación por paso al límite,
∑
n≥1

1
n2 converge.

Observación. Que la convergencia de dos series sea equivalente no significa en absoluto
que tengan la misma suma. Los criterios de comparación miran el comportamiento
asintótico (para n grandes), mientras que la suma depende de todos los sumandos,
incluidos los primeros. En particular, por comparación, las series

∑
n≥1

1
n2 y

∑
n≥1

1
n(n+ 1)

son asintóticas la una a la otra (su carácter es equivalente), pero sus sumas no coinciden:

∞∑
n=1

1
n(n+ 1) = 1,

∞∑
n=1

1
n2 = π2

6 .

(La segunda igualdad requiere herramientas más avanzadas; por ejemplo, series de
Fourier.)

Teorema 3.11 (Criterio de la raíz para series). Sea an ≥ 0 para todo n ∈ N y supongamos
que { n

√
an} → L ≥ 0.

(1) Si L > 1, entonces {an}↛ 0, y la serie
∑
n≥1 an diverge positivamente.

(2) Si L < 1, entonces la serie
∑
n≥1 an es convergente.
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Demostración

(1) Comprobemos que si {an} → 0, entonces necesariamente L ≤ 1. En efecto, si
an → 0, existe m ∈ N tal que, para n ≥ m, se tiene 0 ≤ an < 1, luego

n
√
an < 1 ∀n ≥ m.

Pasando al límite, tenemos L ≤ 1, como se buscaba.
(2) Tomando ε > 0 de forma que 0 ≤ L+ ε < 1 (por ejemplo, ε = 1−L

2 ), encontramos
un m ∈ N tal que, para n ≥ m, se tiene

| n
√
an − L| < ε =⇒ n

√
an < (L+ ε) =⇒ an < (L+ ε)n.

La serie geométrica
∑
n≥1(L+ ε)n converge, ya que 0 < L+ ε < 1, de modo que

también lo hace
∑
n≥1 an por el primer criterio de comparación.

■

Nota: Si L = 1, el criterio anterior no decide:{
n

√
1
n

}
→ 1 y

∑
n≥1

1
n

diverge,
{

n

√
1
n2

}
→ 1 y

∑
n≥1

1
n2 converge.

La combinación del criterio anterior junto al criterio de la raíz para sucesiones nos da el siguiente:

Proposición 3.12 (Criterio del cociente o de d’Alembert). Sea an > 0 para todo n ∈ N y
supongamos que {

an+1
an

}
→ L ≥ 0.

(1) Si L > 1, entonces an ↛ 0, luego la serie
∑
n≥1 an diverge.

(2) Si L < 1, entonces la serie
∑
n≥1 an es convergente.

Ejemplo

Problema. Fijados q ∈ N y x ∈ R con x > 1, la serie∑
n≥1

nq

xn
.

es convergente.

Resolución. Sea an = nq

xn
. Entonces

an+1
an

= (n+ 1)q

nq x
= 1
x

(
1 + 1

n

)q
−→ 1

x
< 1.

Por el criterio del cociente, la serie
∑
n≥1 an es convergente.

En particular, {an} = {nq

xn } → 0, que es un resultado de sucesiones que tuvimos que
demostrar por inducción usando el criterio de Stolz.
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Ejercicio: Para a ∈ R con |a| < 1, calcula la suma de las series∑
n≥1

nan,
∑
n≥1

n(n− 1)an y
∑
n≥1

n2an.

Aunque a priori puedan parecernos criterios equivalentes, no es difícil comprobar que el criterio
de la raíz puede decidir casos en los que el del cociente no lo hace. Consideremos

∑
n≥1

an, an = 3 + (−1)n

2n .

Para n ∈ N,

n
√
an =

n
√

3 + (−1)n
2 =


n√2
2 si n es impar,

n√4
2 si n es par.

En ambos casos { n
√
an} →

1
2 < 1, luego, por el criterio de la raíz, la serie es convergente. Sin

embargo,
an+1
an

= 3 + (−1)n+1

2 (3 + (−1)n) =

1 si n es impar,
1
4 si n es par,

de modo que el criterio del cociente no puede aplicarse.

Ejemplo

Problema. Estudiar la convergencia de la serie

∑
n≥1

(n!)2

(2n)! .

Resolución. Sea an = (n!)2

(2n)! . Claramente an > 0 para todo n ∈ N, y podemos
considerar el cociente

an+1
an

=
(
(n+ 1)!

)2 (2n)!
(2n+ 2)! (n!)2 = (n+ 1)(n+ 1)

(2n+ 2)(2n+ 1) = n2 + 2n+ 1
4n2 + 6n+ 2 −→

1
4 < 1.

Por el criterio del cociente, la serie es convergente.

Proposición 3.13 (Criterio de condensación de Cauchy). Sea {an} una sucesión decreciente
con an > 0 para todo n ∈ N. Entonces∑

n≥1
an converge ⇐⇒

∑
n≥0

2na2n converge

Demostración

Esta demostración no se vio en clase.
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Consideramos las sumas parciales de cada serie:

An =
n∑
k=1

ak, Bn =
n−1∑
k=0

2k a2k n ∈ N.

Empezamos mostraremos por inducción que, para todo n ∈ N,

A2n−1 ≤ Bn ≤ 2A2n−1 . (1)

A partir de esta cadena de desigualdades deduciremos fácilmente que {An} está
mayorada si y solo si lo está {Bn}.

Etapa base n = 1. Se tiene A1 = a1 ≤ a1 = B1 ≤ 2a1 = 2A1.
Paso inductivo. Supongamos que 1 es cierta para n. Por ser {an} decreciente, se
tiene que j ≤ 2n ≤ k ⇒ ak ≤ a2n ≤ aj , y deducimos que:

2n+1−1∑
k=2n

ak ≤ 2na2n = 2 · 2n−1a2n ≤ 2
2n∑

j=2n−1+1
aj , (2)

donde hemos usado que la suma del primer miembro tiene 2n sumandos, y la del último
tiene 2n−1. Usando la hipótesis de inducción y (2) tenemos

A2n+1−1 = A2n−1 +
2n+1−1∑
k=2n

ak ≤ A2n−1 + 2na2n ≤ Bn + 2na2n = Bn+1,

y también

Bn+1 = Bn + 2na2n ≤ 2A2n−1 + 2na2n ≤ 2

A2n−1 +
2n∑

j=2n−1+1
aj

 = 2A2n .

Como {An} y {Bn} son crecientes, An ≤ A2n−1 ≤ Bn, luego {An} está mayorada si
lo está {Bn}. Recíprocamente, si {An} está mayorada, entonces también lo está su
subsucesión A2n−1 , y por tanto Bn. ■

Idea de la demostración anterior

Esta demostración no se vio en clase.

La clave son las dos estimaciones que se obtienen de la monotonía decreciente de {an}:

2n+1−1∑
k=2n

ak ≤ 2na2n , 2na2n ≤ 2
2n∑

j=2n−1+1
aj .

La primera condensa: en el bloque de 2n sumandos sustituimos cada uno por el mayor
del bloque, a2n . La segunda descondensa: repartimos el único término 2na2n en una
suma de 2n−1 términos, cada uno ≥ a2n .
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El mecanismo se visualiza comprobando el caso n = 4:

A15 = a1 + (a2 + a3) + (a4 + a5 + a6 + a7) + (a8 + a9 + · · ·+ a15)
≤ a1 + 2a2 + 4a4 + 8a8 = B4

≤ 2
(
a1 + a2 + (a3 + a4) + (a5 + a6 + a7 + a8)

)
= 2A8.

En la primera desigualdad cada bloque se condensa mayorando por su primer término;
en la segunda, 8a8 se descondensa mayorando por a5 + a6 + a7 + a8 (y análogamente
4a4 por (a3 + a4) y 2a2 por a1 + a2).

Esto ejemplifica por qué A2n−1 ≤ Bn ≤ 2A2n−1 y, por tanto, la equivalencia de
convergencia. ■

La convergencia de la serie armónica de exponente p ∈ N podría haberse estudiado aplicando
un único criterio, de la siguiente manera:

Ejemplo

Problema. Estudiar la convergencia de la serie armónica con exponente p,
∑
n≥1

1
np
, p ∈ N.

Resolución. Aplicamos la condensación a an = 1
np

(sucesión decreciente y positiva):

∑
n≥0

2na2n =
∑
n≥0

2n

(2n)p =
∑
n≥0

( 1
2 p−1

)n
.

Es una geométrica de razón 1/2p−1. Converge si p > 1 y diverge si p = 1. Por el criterio
de condensación, la serie

∑
n≥1

1
np converge para p > 1 y diverge (positivamente) para

p = 1.

Ejemplo

Problema. Para q ∈ N, estudiar la convergencia de
∑
n≥1

1
n q
√
n
.

Resolución. Sea an = 1
n q
√
n

. Entonces an > 0 y {an} es decreciente, por lo que
podemos aplicar el criterio de condensación. Calculamos

2na2n = 2n · 1
2n q
√

2n
= 1

q
√

2n
=
( 1

21/q

)n
.

La serie condensada
∑
n≥0 2na2n es geométrica de razón 2−1/q < 1, luego es convergente.
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Por el criterio de condensación, también converge la serie inicial
∑
n≥1

1
n q
√
n
.

(Equivalente a la serie armónica de exponente 1 + 1
q > 1.)

3.3 Criterios de convergencia para series de signo variable
Hasta ahora hemos estudiado series de términos no negativos. Pasamos al caso general, y
consideramos series

∑
n≥1 xn con xn ∈ R.

En primer lugar, nos damos cuenta de que el caso realmente nuevo es cuando aparecen infinitos
términos positivos e infinitos términos negativos, ya que:

(1) Si el conjunto {n ∈ N : xn < 0} es finito, existe m ∈ N de forma que xn ≥ 0 para n ≥ m, y
sabemos que la convergencia de

∑
n≥1 xn equivale entonces a la de∑

n≥m
xn,

que es de términos no negativos.

(2) De forma análoga, si {n ∈ N : xn > 0} es finito, estudiamos entonces la
∑
n≥1(−xn), que se

encuentra en las condiciones del punto (1).

Cuando
∑
n≥1 xn tiene infinitos términos positivos e infinitos negativos, resulta natural comparar

la serie con
∑
n≥1 |xn|, lo que nos lleva a la siguiente noción:

Definición 3.14. Dada una serie de números reales
∑
n≥1 xn, diremos que es absolutamente

convergente cuando la serie de valores absolutos∑
n≥1
|xn|

es convergente.

Como la nomenclatura sugiere, toda serie absolutamente convergente es convergente. Este hecho
es una consecuencia del Teorema de completitud de R.

Teorema 3.15. Toda serie absolutamente convergente es convergente. Más aún, si
∑
n≥1 |xn|

converge, entonces
∑
n≥1 xn también converge y

∣∣∣ ∞∑
n=1

xn
∣∣∣ ≤ ∞∑

n=1
|xn|.

Demostración

Consideremos las sumas parciales de ambas series: Sn =
∑n
k=1 xk y σn =

∑n
k=1 |xk|
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para n ∈ N. Para p, q ∈ N con q < p,

|Sp − Sq| =
∣∣∣ p∑
k=q+1

xk
∣∣∣ ≤ p∑

k=q+1
|xk| = σp − σq = |σp − σq|.

Nótese que la desigualdad anterior es obvia cuando p = q y, si p < q, basta intercambiar
las etiquetas de p y q. Por tanto, es válida para todo p, q ∈ N.

Sabemos que {σn} converge, luego es de Cauchy. Por la desigualdad anterior, {Sn}
también es de Cauchy y, por completitud de R, converge. Es decir, la serie

∑
n≥1 xn es

convergente.

Finalmente, como |Sn| ≤ σn para todo n y σn →
∑∞
n=1 |xn|, pasamos al límite y

obtenemos ∣∣∣ ∞∑
n=1

xn
∣∣∣ ≤ ∞∑

n=1
|xn|.

■

El recíproco no es cierto, y para entender por qué estudiaremos las series alternadas y el
criterio de Leibniz, que proporciona numerosos ejemplos de series convergentes que no lo son
absolutamente.

Definición 3.16. Llamamos serie alternada a cualquier serie de la forma∑
n≥1

(−1)nan o
∑
n≥1

(−1)n+1an,

donde an ≥ 0 para todo n ∈ N.

Por ejemplo, la serie ∑
n≥1

(−1)n+1

n

recibe el nombre de serie armónica alternada. Claramente, esta serie no es absolutamente
convergente, ya que

∑
n≥1

1
n diverge, pero veremos enseguida que sí es convergente.

Proposición 3.17 (Criterio de Leibniz). Sea {an} una sucesión decreciente con {an} → 0.
Entonces la serie alternada ∑

n≥1
(−1)nan

es convergente.

Demostración

Esta demostración no se vio en clase.

Sea Sn =
∑n
k=1(−1)kak. Vamos a demostrar que Sn es convergente probando que S2n−1

y S2n convergen al mismo límite.
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Usando que an es decreciente y an ≥ 0, para todo n ∈ N se tiene

S2n−1 ≤ S2n−1 + a2n − a2n+1︸ ︷︷ ︸
≥0

= S2n+1

≤ S2n+1 + a2n+2 = S2n+2 = S2n−a2n+1 + a2n+2︸ ︷︷ ︸
≤0

≤ S2n.

En resumidas cuentas, hemos visto que S2n−1 ≤ S2n+1 ≤ S2n+2 ≤ S2n. Por tanto,
{S2n−1} es creciente y {S2n} es decreciente. En particular,

S1 ≤ S2n−1 ≤ S2n < S2 ∀n ∈ N.

Por ser sucesiones monótonas y acotadas, son convergentes, pero es claro que

{S2n − S2n−1} = {a2n} −→ 0.

Esto nos da que S2n y S2n−1 tienen el mismo límite, y por tanto Sn también converge
a dicho límite (recuérdese el ejercicio de la página 28). ■

Anexos del capítulo

3.A Convergencia incondicional
Complementamos este capítulo discutiendo sobre la pregunta que nos hicimos al principio: ¿es
realmente correcto interpretar la suma de una serie convergente como la suma de todos los
términos de una sucesión?

Hemos visto que en algunos casos la suma de una serie presenta ciertas propiedades de distribu-
tividad y de asociatividad. Nos preguntamos ahora por la posible conmutatividad en un sentido
muy general: si permutamos de cualquier forma los sumandos de una serie, ¿se mantiene la
convergencia y la suma de la serie sigue siendo la misma? Vamos a comentar algunos resultados
acerca de esta cuestión, sin entrar en las demostraciones.

Definición 3.18. Una permutación de los números naturales es una aplicación biyectiva
π : N→ N. Dadas una sucesión {xn} y una permutación π de los números naturales, podemos
formar la sucesión {xπ(n)}, que consiste en reordenar los términos de {xn} según π.

Pues bien, si la serie
∑
n≥1 xn es convergente y la suma de series verificase la propiedad

conmutativa, la serie reordenada
∑
n≥1 xπ(n) debería ser convergente y tener la misma suma que

la serie de partida. En principio esto no está nada claro, ya que es difícil relacionar las sumas
parciales de ambas series.

Definición 3.19. Se dice que una serie de números reales
∑
n≥1 xn es incondicionalmente

convergente cuando, para cualquier permutación π de los números naturales, la serie reordenada∑
n≥1

xπ(n)

es convergente.

Es claro que toda serie incondicionalmente convergente es convergente, pues basta tomar
π(n) = n para todo n ∈ N. De hecho, se tiene la siguiente equivalencia:
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Teorema 3.20. Sea
∑
n≥1 xn una serie de números reales. Entonces,

∑
n≥1 xn es incondicional-

mente convergente si, y solo si, es absolutamente convergente. En tal caso:
∞∑
n=1

xπ(n) =
∞∑
n=1

xn.

para toda permutación π : N→ N.

Como se ha dicho, no vamos a exponer con detalle la demostración de esta equivalencia, pero sí
vamos profundizar en un hecho que aparece tácitamente en el resultado anterior: si

∑
n≥1 xn

converge pero no lo hace absolutamente, podemos reordenar sus términos para formar una
sucesión divergente. Pero peor aún, incluso para las reordenaciones que dan lugar a series
convergentes, la suma que se obtiene depende de la permutación de los números naturales que
usemos. Este resultado se debe al matemático alemán Bernhard Riemann y puede enunciarse
como sigue.

Teorema 3.21 (Teorema de Riemann). Sea
∑
n≥1 xn una serie convergente, que no converja

absolutamente, y fijemos s ∈ R. Entonces existen permutaciones π+, π− y πs de los números
naturales, tales que

∑
n≥1 xπ+(n) → +∞,

∑
n≥1 xπ−(n) → −∞ y la serie

∑
n≥1 xπs(n) converge,

con ∞∑
n=1

xπs(n) = s.

Dicho de forma más intuitiva, toda serie convergente que no converja absolutamente, puede
reordenarse para que diverja positivamente, para que diverja negativamente, y también para
que converja a cualquier número real que queramos.

Como conclusión general, podemos decir que si la serie converge absolutamente, está justificado
pensar que la suma de la serie responde a la idea intuitiva de sumar todos los términos de {xn}.
En particular, este es el caso de las series convergentes de términos no negativos. Sin embargo,
cuando

∑
n≥1 xn es convergente, pero no absolutamente convergente, esa idea intuitiva debe

manejarse con precaución.
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Funciones reales de una variable real

4.1 Introducción
En muchos contextos científicos es necesario describir la forma en que una magnitud depende
de otra. Una manera sistemática de hacerlo es mediante el concepto de función.

Históricamente, la idea de función surgió en el siglo XVII al estudiar relaciones entre cantidades
variables en física y geometría. Por ejemplo, Galileo describía la posición de un cuerpo en
movimiento como dependiente del tiempo, y en el siglo XVIII Leibniz y Euler consolidaron el
término función para referirse a una regla que asigna a cada valor de una variable otro valor
determinado.

La primera función de la ciencia.

A comienzos del siglo XVII, la física empezó a orientarse hacia la observación y la
experimentación. Uno de los primeros grandes descubrimientos fue comprender que
el mismo principio que explica muchos de los fenómenos terrestres es el que también
gobierna los movimientos de los planetas en el cielo: la Gravitación Universal. En ese
contexto, Galileo Galilei (Pisa 1564 – Florencia 1642) fue el primero en plantear que
los fenómenos naturales podían analizarse cuantitativamente: midiendo magnitudes y
relacionándolas mediante leyes matemáticas.

La caída de los cuerpos.

Galileo cuestionó la idea, heredada de Aristóteles, de que los cuerpos más pesados caen
más rápido. Según narra la tradición, dejó caer dos esferas, una de hierro y otra de
madera, desde la torre de Pisa, observando que llegaban al suelo al mismo tiempo.
Concluyó que, en ausencia de resistencia del aire, todos los cuerpos caen con la misma
aceleración. Sin embargo, comprobarlo con precisión era difícil en una época en la que
no existían cronómetros como los que conocemos; la caída era demasiado rápida para
medir los tiempos con exactitud.

Para superar esa dificultad, Galileo ideó un experimento más controlable: hacer rodar
una esfera por un plano inclinado. Así suavizaba la acción de la gravedad, consiguiendo
que el movimiento fuese más lento. Variando la inclinación del plano, podía comparar
los resultados y extrapolarlos al caso de la caída vertical.

Galileo colocó pequeñas campanillas a lo largo de la rampa, de modo que sonaran al
paso de la esfera. Ajustó su posición hasta lograr que sonaran a intervalos de tiempo

61
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iguales, que medía con una clepsidra (reloj de agua). Después midió las distancias entre
las campanillas, es decir, los espacios recorridos por la esfera en intervalos iguales de
tiempo.

Según los resultados del experimento, esas distancias seguían la progresión 1, 3, 5, 7, . . . ,
lo que indicaba que el cuerpo recorre espacios cada vez mayores, pero con una regularidad
precisa. De hecho, la misma conclusión podía obtenerse cambiando la inclinación del
plano y la masa de la esfera. Sumando esos incrementos, Galileo obtuvo

d(1) = 1,
d(2) = 1 + 3 = 4,
d(3) = 1 + 3 + 5 = 9,
d(4) = 1 + 3 + 5 + 7 = 16,

es decir, distancias proporcionales al cuadrado del tiempo transcurrido:

d(t) = C t2.

Galileo había descubierto la primera relación funcional entre dos magnitudes físicas:
la distancia recorrida por un cuerpo en caída (o en un plano inclinado) y el tiempo
transcurrido. Esa expresión, aunque simple, representa un cambio radical en la forma
de entender la naturaleza: a partir de entonces, describir un fenómeno significaría
encontrar la función que relaciona sus variables.

1 1+3
1+3+5

1+3+5+7

Y
Y

Y

Y

Las funciones permiten, por tanto, expresar de manera precisa la dependencia que existe entre
dos magnitudes reales. Algunos ejemplos cotidianos son:

(1) La altura de una persona en función de su edad.

(2) El número de ejemplares de una especie en un determinado hábitat en función del tiempo.

De forma general, el concepto de función recoge la idea de que un conjunto de datos puede
depender de otro. En su formulación moderna, una función es una ley o correspondencia que
asocia a cada elemento de un conjunto un único elemento de otro.

Definición 4.1. Sean A,B ⊂ R no vacíos. Llamamos función real de variable real a cualquier
aplicación f : A→ B, esto es, una correspondencia que asigna a cada elemento x ∈ A un único
elemento f(x) ∈ B.

Para definir una función suele usarse la siguiente notación, que especifica el dominio de definición
de una función f , así como la ecuación que nos permite obtener f(x) a partir de x.

f : A→ B, x 7→ f(x) = · · · o f : A→ B, f(x) = · · ·

Si f : A→ B es una función, decimos que A es su conjunto de definición o dominio.
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Puesto que sólo vamos a trabajar con este tipo de funciones, cuando usemos la palabra función,
nos referimos siempre a una función real de variable real.

Definición 4.2. El conjunto f(A) de los valores que toma f se llama imagen o recorrido de f .

f(A) = {f(x) : x ∈ A} = {y ∈ R : y = f(x) para algún x ∈ A}

Dado que toda aplicación f : A → B es en particular una aplicación f : A → R,
siempre podemos escribir lo segundo. Especificar que una función f devuelve valores
en B es una forma de enfatizar la propiedad f(A) ⊂ B. Por ejemplo, la función parte
entera de x suele denotarse como ⌊·⌋ : R→ Z, ya que ⌊x⌋ ∈ Z para todo x ∈ R.

Nótese que si elegimos B = f(A), f se convierte automáticamente en una aplicación
sobreyectiva.

Toda función real queda completamente determinada por su gráfica, que es el siguiente subcon-
junto de R× R:

Gr f = {(x, f(x)) : x ∈ A}

Si representamos este conjunto en el plano cartesiano R2, los puntos (x, y) que forman Gr f
son aquellos que cumplen dos condiciones: la abscisa x es un punto de A y la ordenada y es su
imagen por f . En resumidas cuentas:

Gr f = { (x, y) ∈ R2 : x ∈ A, y = f(x) }.

Por definición de función, para cada x ∈ A la recta vertical que pasa por (x, 0) contiene un
único punto de la gráfica, el que verifica y = f(x). Si x /∈ A, dicha recta no corta a la gráfica
de f .

x

y

A

Gr f

x

f(x)

Geométricamente, al proyectar Gr f sobre el eje de abscisas se obtiene el conjunto A donde f
está definida y, para cada x ∈ A, f(x) es el único y ∈ R tal que (x, y) ∈ Gr f .

Esto motiva la notación y = f(x) para x ∈ A a la hora de definir funciones. Bajo ese punto
de vista, a x se le llama variable independiente, e y se dice que es la variable dependiente. En
términos de relaciones entre magnitudes, es conveniente pensar en x como en un dato y en
y como en un resultado. La función f juega el papel del modelo que nos permite predecir el
resultado y a partir del dato x.
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Date cuenta: La relación y2 = x en R2 no define la gráfica de una función R→ R,
ya que existen valores de x con dos imágenes. Por ejemplo, para x = 4, tenemos y = 2
e y = −2.

x

y

(4, 2)

(4,−2)

En cambio, x 7→
√
x y x 7→ −

√
x sí son funciones (definidas por ejemplo en [0,+∞)).

Definición 4.3. Dada una relación y = f(x), llamamos dominio natural o dominio maximal
de f al mayor subconjunto de R donde puede definirse f , y lo denotamos por

Dom(f) = {x ∈ R : f(x) ∈ R}.

Ejemplos.

(1) Si f es una función polinómica, Dom(f) = R, ya que podemos sumar, multiplicar y elevar a
potencias naturales cualquier número real.

(2) Llamamos función racional a cualquier función f de la forma f(x) = p(x)
q(x) , siendo p y q

funciones polinómicas. En tal caso, se tiene

Dom(f) = {x ∈ R : g(x) ̸= 0}.

La función racional x 7→ 1
x

puede definirse para todo x ∈ R∗ = {x ∈ R : x ≠ 0}.
Su representación gráfica es una hipérbola de dos ramas.
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x

y

(3) Para n ∈ N, el dominio maximal de una función radical de la forma f(x) = 2n
√
g(x) son los

puntos donde el radicando g es no negativo:

Dom(f) = {x ∈ R : g(x) ≥ 0}.

Si f(x) =
√
x2 − 4, entonces

Dom(f) = {x ∈ R : x2 − 4 > 0} = (−∞,−2] ∪ [2,+∞).

x−2 2

Conocida la gráfica de una función, es fácil obtener la de funciones similares obtenidas mediante
transformaciones elementales de la original, como son las traslaciones, las dilataciones y las
reflexiones.

Definición 4.4. Sea f : A→ R una función. Dado c ∈ R, llamamos

Ac = {z ∈ R : z + c ∈ A} = {x− c : x ∈ A}.

(1) La traslación horizontal de c unidades de f es la función g : Ac → R definida como
g(x) = f(x+ c). Si c > 0, se trata de una traslación a la izquierda, y si c < 0, una traslación
a la derecha.

(2) La traslación vertical de c unidades de f es la función g : A → R definida como
g(x) = f(x) + c. Si c > 0, estamos trasladando la función f hacia arriba, y si c < 0, hacia
abajo.
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x

y

−1 0 1 2 3 4 5

y = x2 y = (x− 3)2

+3

A = [−1, 1] A−3 = [2, 4]

x

y

y = x2

y = x2 + 2

+2

Definición 4.5. Sea f : A→ R una función. Dado un c ∈ R∗, llamamos

cA = {cx : x ∈ A}.

(1) La reflexión respecto al eje x de f es la función g : A→ R definida como g(x) = −f(x).

(2) La reflexión respecto al eje y de f es la función g : −A→ R definida como g(x) = f(−x).

(3) La reflexión respecto al origen de f es la función g : −A → R definida como g(x) =
−f(−x).

x

y

y = x2

y = −x2

Reflexión respecto al eje x: cada punto (x, y) ∈ Gr(f) se transforma en (x,−y) ∈ Gr(g).

Las funciones que permanecen invariantes ante las transformaciones (1) o (3) tienen gráficas
simétricas, lo que se traducirá en propiedades analíticas útiles a la hora de calcular sus integrales.

Definición 4.6. Sea A ⊂ R tal que −A = A. Se dice que una función f : A→ R es

(1) simétrica par si f(−x) = f(x) para todo x ∈ A.

(2) simétrica impar si f(−x) = −f(x) para todo x ∈ A.
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x

y

y = |x|

Función par: |−x| = |x|

x

y

y = x3

Función impar: (−x)3 = −x3

Las gráficas de las funciones pares tienen la propiedad de que al plegarlas a lo largo del eje y,
las mitades a ambos lados del origen son coincidentes. Análogamente, si plegamos la gráfica
de una función impar a lo largo de ambos ejes, las mitades a ambos lados del (0, 0) resultan
coincidentes.

Finalmente, discutimos las transformaciones que consisten en modificar la escala de la variable
o de la función.

Definición 4.7. Sea f : A→ R una función y c > 0.

Si c > 1:

(1) La contracción horizontal de razón c es la función g : 1
cA→ R definida por g(x) = f(cx).

(2) La dilatación vertical de razón c es la función g : A→ R definida por g(x) = cf(x).

Si c < 1:

(3) La dilatación horizontal de razón c es la función g : 1
cA→ R definida por g(x) = f(cx).

(4) La contracción vertical de razón c es la función g : A→ R definida por g(x) = cf(x).

x

y

y = f(x)
y = f(x2 )

Dilatación horizontal de razón 1/2.

En general, una función puede obtenerse combinando varias de las transformaciones
anteriores. Por ejemplo, si partimos de f(x) = x2, podemos representar la gráfica de la
función

g(x) = 1− (x+ 2)2,

su gráfica se obtiene aplicando sucesivamente:
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(1) una traslación 2 unidades a la izquierda (x+ 2);
(2) una reflexión respecto al eje x (signo negativo delante del cuadrado);
(3) una traslación 1 unidad hacia arriba (el +1 final).

x

y
y = x2

y = (x+ 2)2

y = −(x+ 2)2

y = 1− (x+ 2)2

−2 en x

Reflexión

+1 en y

Composición de transformaciones: traslación, reflexión y traslación vertical.

Enumeramos a continuación las operaciones algebraicas que podemos hacer con dos funciones
definidas en un subconjunto A ⊂ R no vacío. Para ello, definimos F(A) como el conjunto de
todas las funciones f : A→ R.

Definición 4.8. Para cualesquiera f, g ∈ F(A) y α ∈ R, definimos las siguientes operaciones:

(1) Suma: f + g ∈ F(A), siendo (f + g)(x) = f(x) + g(x), ∀x ∈ A.

(2) Producto: fg ∈ F(A), siendo (fg)(x) = f(x) g(x), ∀x ∈ A.

(3) Producto por escalares: αf ∈ F(A), siendo (αf)(x) = α f(x), ∀x ∈ A.

(4) Cociente: Si g(x) ̸= 0 para todo x ∈ A, entonces f/g ∈ F(A), con(
f

g

)
(x) = f(x)

g(x) , ∀x ∈ A.

Las propiedades de la suma y producto de números reales se traslada inmediatamente a la de
funciones. La suma de funciones es asociativa y distributiva, y tiene como elemento neutro a la
función x 7→ 0 para todo x ∈ A. Además, toda f ∈ F(A) tiene una función opuesta, −f . El
producto por su parte es asociativo, conmutativo y distributivo respecto de la suma, y además
posee el elemento neutro x 7→ 1 para todo x ∈ A. Así pues, (F(A),+, ·) es un anillo conmutativo
con unidad.

Para α ∈ R, a menudo interpretaremos α como la función que vale constantemente α,
esto es, fα : A→ R, fα(x) = α. En particular, escribimos f = 0 para decir que f(x) = 0
para todo x ∈ A, y por f ̸= 0 entendemos que existe un x ∈ A tal que f(x) ̸= 0.
Entonces, el producto por escalares no es más que un caso particular del producto
de funciones, aunque conviene resaltar que (1) y (3) dotan a F(A) de estructura de
espacio vectorial (de dimensión infinita).
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Si f(x) ̸= 0 para todo x ∈ R, f tiene una inversa para el producto; la función 1/f . Sin embargo,
salvo en el caso trivial en que A es un solo punto, esta condición es más fuerte que f ̸= 0. Por
tanto F(A), en general, no es un cuerpo.

Preferimos evitar la notación f−1 para referirnos a la función 1/f , ya que esta se reserva para
la función inversa respecto a la composición de funciones.

Definición 4.9. Sean f : A → R y g : B → R funciones tales que f(A) ⊂ B. Definimos la
composición de f con g como la función g ◦ f : A→ R dada por

(g ◦ f)(x) = g(f(x)), ∀x ∈ A.

A B R
f g

g ◦ f

Ejemplo: consideremos la función valor absoluto V : R→ R definida por V (x) = |x|
para todo x ∈ R. Para cualquier función f : A→ R se tiene trivialmente que f(A) ⊂ R,
lo que nos permite considerar la función compuesta

(V ◦ f)(x) = V (f(x)) = |f(x)|, ∀x ∈ A,

que se suele denotar por |f |.

Ejemplo

Problema. Consideremos las funciones f, g : R → R dadas por f(x) = |x|, g(x) =
x3 − x. Comprobemos que (f ◦ g) ̸= (g ◦ f).
Resolución. Calculamos:

(f ◦ g)(x) = f(g(x)) = |x3 − x|, (g ◦ f)(x) = g(f(x)) = |x|3 − |x|.

A primera vista las expresiones son parecidas, pero no coinciden. Por ejemplo, para
x = −1

2 :

(f ◦ g)(−1
2) = |(−1

2)3 + 1
2 | =

3
8 , (g ◦ f)(−1

2) = (1
2)3 − 1

2 = −3
8 .

Si representamos ambas composiciones vemos de forma más clara las diferencias:

x

y

(f ◦ g)(x) = |x3 − x|

x

y

(g ◦ f)(x) = |x|3 − |x|

En conclusión, el orden en que se componen las funciones es esencial: aunque ambas
composiciones tengan sentido, generalmente (f ◦ g) ̸= (g ◦ f).
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Definición 4.10. Sea f : A → R. Recordamos que f es inyectiva si nunca toma el mismo
valor en dos puntos distintos del conjunto A, es decir, si se verifica que

x, y ∈ A, f(x) = f(y) ⇒ x = y.

Si f : A→ B es una función inyectiva, entonces la ecuación y = f(x) tiene una única solución
(en x), lo que se traduce gráficamente en que cada recta horizontal a altura y ∈ f(A) interseca
a Gr f en un solo punto.

x

y

A

Gr f

x

f(x)

y

Gráfica de una función no inyectiva.

Definición 4.11. Sea f : A→ R una función inyectiva. Entonces f puede considerarse como
una aplicación biyectiva de A sobre f(A), y podemos definir su función inversa

f−1 : f(A)→ A,

asociando a cada y ∈ f(A) el único x ∈ A que cumple f(x) = y, es decir,

f−1(y) = x tal que f(x) = y.

Obsérvese que tiene sentido considerar las composiciones f−1 ◦ f y f ◦ f−1, y se verifica, por
definición:

(f−1 ◦ f)(x) = x ∀x ∈ A, y (f ◦ f−1)(y) = y ∀y ∈ f(A).

Las igualdades anteriores suelen leerse diciendo que f−1 ◦ f es la función identidad en A,
y f ◦ f−1 la identidad en f(A). Además, f−1 también es inyectiva y su inversa es la función
original, es decir,

(f−1)−1 = f.

Cuando f−1 existe, su gráfica es la imagen especular de la gráfica de f respecto a la bisectriz
del primer cuadrante de R2, esto es, la recta de ecuación y = x.

Para comprobarlo, basta darse cuenta de que y = f(x) ⇐⇒ f−1(y) = x. En particular, si el
punto (x, y) pertenece a la gráfica de f , entonces el punto (y, x) pertenece a la gráfica de f−1.
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x

y

y = x

f(x) = ex

f−1(x) = log x

(x, y)

(y, x)

Las gráficas de f y f−1 son simétricas respecto a la recta y = x.

La simetría deja claro que la inversa no siempre existe como función. Por ejemplo, si f(x) = 2,
su gráfica es la recta horizontal y = 2; reflejada respecto a y = x se obtiene la recta vertical
x = 2, que no es la gráfica de ninguna función y = h(x).

x

y y = 2

x

y
x = 2

(no es una función)

4.2 Funciones continuas
Intuitivamente, una función f será continua en un punto x cuando, al acercarnos a x, los valores
de la función se acerquen a f(x). Como veremos, esta noción admite varias formulaciones
equivalentes, siendo la más manejable la de acercarnos a x a través de una sucesión {xn} → x.

Definición 4.12. Sea f : A→ R una función x ∈ A. Decimos que f es continua en x si para
cada ε > 0 existe δ > 0 tal que, si y ∈ A verifica |y − x| < δ, entonces |f(y) − f(x)| < ε. Es
decir,

∀ ε > 0 ∃ δ > 0 : y ∈ A, |y − x| < δ =⇒ |f(y)− f(x)| < ε.

Obsérvese que no tiene sentido hablar de la continuidad de una función en puntos
que no están en A.

Si ∅ ≠ B ⊂ A, diremos que f es continua en B si f es continua todo punto de B. En particular,
diremos simplemente que f es continua cuando sea continua en A.

Interpretación geométrica de la continuidad.

Fijados f : A→ R y x ∈ A, para cada ε > 0 consideramos la banda horizontal entre las
rectas y = f(x)−ε y y = f(x)+ε. La condición de continuidad afirma que, por estrecha
que sea esa banda, existe un δ > 0 tal que la parte de la gráfica de f correspondiente a
los puntos y ∈ A con |y− x| < δ queda entera dentro de la banda. Es decir, el trozo de
gráfica sobre el intervalo (x− δ, x+ δ) ∩A se mantiene entre f(x)− ε y f(x) + ε.
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x

y

f(x) + ε

f(x)− ε

x− δ x+ δ

(x, f(x))

x

Proposición 4.13 (Caracterización secuencial de la continuidad). Sea f : A → R y fijemos
x ∈ A. Son equivalentes:

(i) f es continua en el punto x.

(ii) Para toda sucesión {xn} con xn ∈ A y {xn} → x, se tiene {f(xn)} → f(x). A esta propiedad
se le suele dar el nombre de continuidad secuencial.

(iii) Para toda sucesión monótona {xn} de puntos de A, con {xn} → x, se tiene {f(xn)} → f(x).

Demostración

(i)⇒(ii). Sea {xn} ⊂ A con xn → x. Debemos ver que f(xn)→ f(x). Sea ε > 0; por
(i) existe δ > 0 tal que |y − x| < δ implica |f(y) − f(x)| < ε. Como xn → x, existe
m ∈ N con |xn − x| < δ para todo n ≥ m. En consecuencia, para n ≥ m,

|f(xn)− f(x)| < ε.

Esto prueba que f(xn)→ f(x).

(ii)⇒(iii). Es inmediato: si (i) vale para toda sucesión de puntos de A que converge a
x, entonces en particular vale para las sucesiones monótonas.

(iii)⇒(i). Demostraremos el contrarrecíproco: si (i) no se verifica, entonces tampoco
puede cumplirse (iii).

Si (i) es falso, entonces existe ε0 > 0 tal que, para todo δ > 0, se puede encontrar
y ∈ A con |y − x| < δ y, sin embargo, |f(y)− f(x)| ≥ ε0.

Para cada n ∈ N tomamos δ = 1
n y obtenemos un yn ∈ A tal que

|yn − x| < 1
n y |f(yn)− f(x)| ≥ ε0.

Entonces {yn} → x. Sea {xn} una subsucesión monótona de {yn}, que existe por el
lema del sol naciente. Se sigue que {xn} → x y

|f(xn)− f(x)| ≥ ε0 para todo n ∈ N.

Por tanto, {f(xn)} no converge a f(x). ■

La caracterización de la continuidad (ii) nos permite dar de forma inmediata los primeros
ejemplos de funciones continuas.
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Primeros ejemplos.
Las funciones constantes f(x) = α, con α ∈ R, son continuas.
La función identidad en A, dada por f(x) = x para todo x ∈ A, también es
continua.
La función valor absoluto es continua. Si {xn} → x, entonces {|xn|} → |x|.

Proposición 4.14. Sean f, g : A → R funciones continuas en un conjunto no vacío B ⊂ A.
Entonces f + g y fg son continuas en B. Si además g(x) ̸= 0 para todo x ∈ A, el cociente f/g
es continuo en B.

Demostración

Sea x ∈ B y {xn} ⊂ A una sucesión tal que xn → x. Por la continuidad de f y g en x,

f(xn)→ f(x) y g(xn)→ g(x).

Entonces:

(1) Para la suma,

{(f + g)(xn)} = {f(xn) + g(xn)} −→ f(x) + g(x) = (f + g)(x).

(2) Para el producto,

{(f g)(xn)} = {f(xn) g(xn)} −→ f(x) g(x) = (f g)(x).

(3) Para el cociente,

{f
g

(xn)
}

=
{f(xn)
g(xn)

}
−→ f(x)

g(x) = f

g
(x).

■

Este resultado nos permite construir numerosas funciones continuas:

Ejemplos:
Toda función polinómica p(x) =

∑n
k=0 akx

k, con n ∈ N, ak ∈ R para todo
k = 0, . . . , n y an ̸= 0, es continua en R.
Si p y q son funciones polinómicas con q ̸= 0, entonces la función racional f = p

q
es continua en su dominio natural de definición {x ∈ R : q(x) ̸= 0}.

Comprobamos ahora la continuidad de la composición.

Proposición 4.15. Sean f : A→ R y g : C → R funciones tales que f(A) ⊂ C. Si f es continua
en x ∈ A y g es continua en f(x) ∈ f(A), la composición g ◦ f es continua en x.

En particular, si f es continua en un subconjunto no vacío B ⊂ A y g es continua en g(B),
entonces g ◦ f es continua en B.
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Demostración

Sea x ∈ B y {xn} ⊂ A una sucesión con xn → x. Por ser f continua en x, tenemos
f(xn)→ f(x); por tanto {f(xn)} es una sucesión de puntos de C que converge a f(x).
Como g es continua en f(x) ∈ f(B), concluimos que

{g(f(xn))} → g(f(x)).

Esto prueba que g ◦ f es continua en x, y como x ∈ B era arbitrario, en todo B. ■

El recíproco no es cierto en general: puede ocurrir que g ◦ f sea continua y, sin embargo, f o
g no lo sean.

Para verlo, construimos una función extremadamente discontinua: definimos f : R→ R
por

f(x) =

−1, x ∈ Q,
1, x ∈ I.

(4.1)

Dado x ∈ R, la densidad de Q y de I en R nos permiten construir sucesiones {qn} ⊂ Q
y {rn} ⊂ I con {qn} → x y {rn} → x (esto puede verificarse como ejercicio).

Entonces {f(qn)} → −1 y {f(rn)} → 1; si f fuese continua en x tendríamos necesaria-
mente −1 = 1, contradicción. Así, f no es continua en ningún punto de R.

Podemos observar que |f | = 1, lo que nos da una composición continua sin que f lo
sea.

Función de Thomae. Definimos T : R→ R por

T (x) =


1
q

si x = p

q
∈ Q, con p ∈ Z, q ∈ N y mcd(|p| , q) = 1,

0 si x ∈ I.

(Obsérvese que la condición mcd(0, q) = 1 implica necesariamente que T (0) = 1).

Se tiene que T es continua en I y discontinua en Q.

Continuidad en los irracionales. Sea x ∈ I y ε > 0. Elegimos un n0 ∈ N tal que
1
n0
< ε. Puede comprobarse sin dificultad que en el intervalo (x− 1, x+ 1) hay, como

mucho, una cantidad finita de racionales de la forma p/q con 0 < q ≤ n0. Esto nos
permite tomar un δ > 0, suficientemente pequeño, de forma que

(x− δ, x+ δ) ∩
{
p

q
∈ Q : 0 < q ≤ n0

}
= ∅.

(En efecto, podemos tomar como δ la mitad de la distancia al racional más cercano
a x de la forma p/q con 0 < q ≤ n0.) Sea entonces y ∈ R con |y − x| ≤ δ. Si y es
irracional, entonces |T (y)− T (x)| = 0 < ε trivialmente. Si y = p

q es racional, tenemos
necesariamente q > n0, lo que nos da

|T (y)− T (x)| = 1
q
<

1
n
< ε.



Capítulo 4. Funciones reales de una variable real 75

Esto demuestra que T es continua en x.

Discontinuidad en los racionales. Sea x = p
q ∈ Q en forma irreducible. Tomando

cualquier sucesión de irracionales {xn} → x, se tiene T (xn) = 0 para todo n, luego
{T (xn)} → 0 ̸= 1

q = T (x). Por la caracterización secuencial de la continuidad, T no es
continua en x.

Fuente: Wikipedia, https://en.wikipedia.org/wiki/Thomae%27s_function.

El matemático inglés John H. Conway dotó a esta función del nombre Estrellas sobre
Babilonia debido a la forma de su gráfica.

Ejercicio: Sea f : R→ R dada por

f(x) =
{
x si x ∈ Q,
−x si x ∈ I.

Estudiar en qué puntos de R es continua f .

La continuidad de una función f es una característica de las que llamaremos locales, es decir,
para estudiar si f es continua en x, solo nos interesan los valores que toma f cerca de x. Para
formalizar esto, necesitamos la siguiente definición:

Definición 4.16. Sean f : A → R y ∅ ≠ B ⊂ A. La restricción de f a B es la función
f |B : B → R definida por

(f |B)(x) = f(x), ∀x ∈ B.

En este contexto, también suele decirse que f es una extensión de g.

Proposición 4.17 (Carácter local de la continuidad). Sean f : A → R, ∅ ≠ B ⊂ A y
x ∈ B.

(1) Si f es continua en x, entonces f |B también es continua en x.

(2) Si existe δ > 0 tal que (x − δ, x + δ ) ∩ A ⊂ B, y f |B es continua en x, entonces f es
continua en x.

https://en.wikipedia.org/wiki/Thomae%27s_function
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Demostración

(1) Sea {xn} ⊂ B con xn → x. Entonces {xn} ⊂ A y, por la continuidad de f en x, se
tiene f(xn)→ f(x). Como (f |B)(xn) = f(xn), concluimos (f |B)(xn)→ (f |B)(x).

(2) Sea ahora {xn} ⊂ A con xn → x. Por la definición de convergencia, existe m ∈ N
tal que para n ≥ m se cumple |xn − x| < δ, luego xn ∈ (x − δ, x + δ) ∩ A ⊂ B.
Usando la continuidad de f |B en x, obtenemos

n ≥ m, f(xn) = (f |B)(xn) −→ (f |B)(x) = f(x).

Así, f es continua en x.
■

Nota: La hipótesis adicional en (2) no puede eliminarse; dicho de otro modo, el
recíproco de (1) es falso en general.

Para comprobar esto, basta considerar la función f definida en (4.1) y B = {x} para
cualquier x ∈ R. f |B es trivialmente continua, pero f no es continua en x para ningún
x ∈ R.

Este resultado es especialmente útil para estudiar funciones cuya definición f(x) cambia a lo
largo de su conjunto de definición.

Ejemplo

Problema. Estudiar la continuidad de la función parte entera

⌊·⌋ : R→ Z
⌊x⌋ = máx{k ∈ Z : z ≤ x}

x

y

−3

−3

−2

−2

−1
−1

1

1

2

2

3

3

0

y = ⌊x⌋

Resolución. En primer lugar, veamos que ⌊·⌋ es discontinua en todo x ∈ Z. Para esto,
basta considerar la sucesión xn = x− 1

2n , ya que {xn} → x y ⌊xn⌋ = x− 1 para todo
n, luego {⌊xn⌋} → x− 1 ̸= ⌊x⌋.

Sea ahora x ∈ R \ Z, y definamos B = (⌊x⌋ , ⌊x+ 1⌋). Claramente x ∈ B y si tomamos
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0 < δ < mı́n{⌊x+ 1⌋ − x, x− ⌊x⌋}, se tiene

(x− δ, x+ δ) ∩ R ⊂ B.

Por el carácter local de la continuidad, si ⌊·⌋ |B es continua en x, lo será también ⌊·⌋.
La primera lo es, ya que es constantemente igual a ⌊x⌋, esto es:

⌊y⌋ = ⌊x⌋ ∀y ∈ B.

Por tanto, ⌊·⌋ es continua en R \ Z.

Ejercicio: Estudiar la continuidad de las funciones f, g : R→ R dadas por

f(x) =
⌊
x2
⌋
∀x ∈ R, g(x) =

{
x
⌊

1
x

⌋
si x ̸= 0,

0 si x = 0.

Ejemplo

Problema. Sean g, h : R→ R funciones continuas tales que g(0) = h(0). Definimos

f(x) =
{
g(x), x ≤ 0,
h(x), x ≥ 0.

Estudiar la continuidad de f en R.
Resolución. Notamos primero que f |R+

0
= h y f |R−

0
= g, por lo que f es continua en

R+ y en R− por el carácter local de la continuidad.

Queda x = 0. Tomemos una sucesión {xn} → 0. Por la caracterización secuencial con
sucesiones monótonas, podemos suponer que {xn} es monótona.

Si {xn} es creciente, entonces xn ≤ 0 ∀n, y por tanto {f(xn)} = {g(xn)} → g(0) = f(0).

Si {xn} es decreciente, entonces xn ≥ 0 ∀n, y {f(xn)} = {h(xn)} → h(0) = f(0).

En ambos casos {f(xn)} → f(0), luego f es continua en 0. Concluimos que f es
continua en todo R.

4.3 Límite funcional
En esta sección estudiaremos el comportamiento de una función al acercarnos a un punto de la
recta real, que no necesariamente pertenecerá al dominio de la función. Solo necesitaremos que,
desde el conjunto en el que trabajamos, podamos acercarnos a dicho punto sin pasar por él.

Definición 4.18. Sea A ⊂ R y α ∈ R. Diremos que α es punto de acumulación de A (o que A
se acumula en α) si para todo δ > 0 se verifica

(α− δ, α+ δ) ∩
(
A \ {α}

)
̸= ∅.

Intuitivamente, α ∈ R es un punto de acumulación de A si existen puntos de A distintos de α
arbitrariamente cerca de α.
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Denotaremos A′ = {α ∈ R : A se acumula en α}.

Los puntos de acumulación de A se caracterizan por ser puntos de R a los que se puede llegar
mediante sucesiones de A que no pasen por dicho punto.

Proposición 4.19. Sea A ⊂ R y α ∈ R. Entonces

α ∈ A′ ⇐⇒ ∃{xn} ⊂ A \ {α} tal que {xn} → α.

Demostración

(⇒) Supongamos α ∈ A′. Para cada n ∈ N tomamos δ = 1
n . Por la definición, existe

xn ∈ (α− 1
n , α+ 1

n) ∩ (A \ {α}), luego 0 < |xn − α| < 1
n , y por tanto {xn} → α.

(⇐) Si existe {xn} ⊂ A \ {α} con {xn} → α, dado δ > 0 podemos escoger m tal que
|xm − α| < δ. Entonces xm ∈ (α− δ, α+ δ) ∩ (A \ {α}), luego la intersección es no
vacía para todo δ > 0. Así, α ∈ A′.

■

Pasamos a calcular los puntos de acumulación de un intervalo real.

Proposición 4.20. Sea I ⊂ R un intervalo. Entonces:

(1) Si I = ∅ o I = {a} es un punto, entonces I ′ = ∅.

(2) Si I es un intervalo no trivial (contiene al menos dos puntos), entonces:

(a, b)′ = (a, b]′ = [a, b)′ = [a, b]′ = [a, b]
(a,+∞)′ = [a,+∞)′ = [a,+∞)
(−∞, b)′ = (−∞, b]′ = (−∞, b]
R′ = R.

Demostración

Esta demostración no se vio en clase.

(1) Es claro: si I = ∅ no hay puntos en I; si I = {a}, ningún punto α ≠ a puede ser
de acumulación, ya que todas las sucesiones de puntos de I convergen a a. Además,
a /∈ I ′, ya que I \ {a} = ∅.
(2) Sea I un intervalo no trivial, esto es, un intervalo que contiene al menos dos puntos.
Empezaremos probando que todos los puntos de I son de acumulación, esto es, I ⊂ I ′.

Dado x ∈ I, existe y ∈ I con y ̸= x. Para 0 < δ < |y − x| se tiene

(x− δ, x+ δ) ∩ (I \ {x}) ̸= ∅,

ya que todos los puntos entre x e y pertenecen a I. Esto nos da que x ∈ I ′. Como
consecuencia inmediata tenemos R′ = R.

A continuación, demostraremos que si I está acotado y a = ı́nf I, b = sup I, entonces
a, b ∈ I ′. Por tanto, tendremos [α, β] ⊂ I ′.
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Por definición de intervalo, (a, b) ⊂ I, lo que nos da que para 0 < δ < β − α se tiene

(a, a+ δ) ∩ I ̸= ∅,

luego α ∈ I ′. Un razonamiento análogo nos da β ∈ I ′.

Recíprocamente, probemos que I ′ ⊂ [a, b].

Sea x ∈ I ′, y {xn} ⊂ I \ {x} una sucesión con {xn} → x. Puesto que a ≤ xn ≤ b para
todo n, pasando al límite tenemos a ≤ x ≤ b, luego x ∈ [a, b], como queríamos.

Si I es una semirrecta (abierta o cerrada), un argumento análogo muestra que I ′ está
contenido en la correspondiente semirrecta cerrada. ■

Una regla sencilla que nos permite simplificar el cálculo de los puntos de acumulación de un
conjunto es la siguiente:

Proposición 4.21. Para A,B ⊂ R se tiene (A ∪B)′ = A′ ∪B′. ■

El ejemplo de los intervalos muestra que, en general, no existe una relación de inclusión entre A
y A′. Pueden existir puntos de acumulación de A que no sean elementos de A y puntos de A
que no sean de acumulación. A los segundos se les da el nombre de puntos aislados, que describe
de forma muy clara a qué tipo de puntos de A nos referimos.

Definición 4.22. Dado A ⊂ R no vacío, decimos que x ∈ A es un punto aislado de A si x /∈ A′.

De forma manifiesta, toda función f : A→ R es continua en todo punto aislado x ∈ A \A′, ya
que la única forma de acercarnos arbitrariamente a x es a través de la sucesión constantemente
igual a x.

Proposición 4.23. Sea f : A→ R una función y x ∈ A \A′. Entonces f es continua en x.

Demostración

Puesto que x /∈ A′, existe δ > 0 tal que (x− δ, x+ δ) ∩A = {x}. Entonces, dado ε > 0,
es claro que si y ∈ A es tal que |y − x| < δ, entonces y = x. Por tanto,

|f(y)− f(x)| = 0 < ε.

■

Definición 4.24. Sea A ⊂ R y α ∈ A′. Decimos que f tiene límite L ∈ R en el punto α si para
todo ε > 0 puede encontrarse un δ > 0 tal que, para todo x ∈ A \ {α} con |x− α| < δ se tiene
|f(x)− L| < ε. Simbólicamente,

∀ ε > 0 ∃ δ > 0 :
(
x ∈ A, 0 < |x− α| < δ

)
=⇒ |f(x)− L| < ε.

En tal caso escribimos

ĺım
x→α

f(x) = L, o f(x)→ L (x→ α).
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Nota: Esta definición de límite no es buena si α /∈ A′, ya que en ese caso existe un
δ0 > 0 tal que

{x ∈ A : 0 < |x− α| < δ0} = ∅.

Por lo tanto, para cualquier valor L ∈ R, δ0 hace cierta la condición de límite(
0 < |x− α| < δ0 ⇒ |f(x)− L| < ε

)
, pues esta debe ser verificada para un conjunto

vacío de puntos. Esta observación se apoya en un hecho básico de la lógica proposicional,
a saber,

p→ q ⇐⇒ ¬p ∨ q,

y en este caso siempre tenemos ¬p. Esto puede resultar extraño, pues en matemáticas
acostumbramos a probar la implicación p→ q partiendo de que p es cierta, y rara vez
contemplamos la posibilidad de que la premisa sea falsa.

Aceptando esta definición para α /∈ A′, podríamos probar atrocidades contra el sentido
común como

ĺım
x→−2

√
x = 27, o también que ĺım

x→−2

√
x = −8,

perdiendo de vista la noción intuitiva de acercarnos al punto α a través de puntos de
A \ {α}, además de propiedades fundamentales como la unicidad del límite.

Nótense las diferencias con la definición de continuidad en x: en primer lugar, podemos calcular
el valor del límite de f en puntos que no están en el dominio de definición de f . Aunque
tuviéramos definido f(α), este no influye en la existencia del límite ni en su valor. Por otro lado,
no tiene sentido hablar de límite en los puntos aislados de A, pero sí de continuidad. De hecho,
como vismo anteriormente, toda función es continua en los puntos aislados de su dominio.

Al igual que la continuidad, el límite puede caracterizarse mediante sucesiones monótonas. La
demostración es completamente análoga a la que se hizo para la continuidad, y la omitiremos
en aras de la brevedad.

Proposición 4.25 (Caracterización secuencial del límite funcional). Sea f : A→ R una función,
α ∈ A′ y L ∈ R. Son equivalentes:

(i) ĺım
x→α

f(x) = L.

(ii) Para toda sucesión {xn} ⊂ A \ {α} con {xn} → α, se tiene {f(xn)} → L.

(iii) Para toda sucesión monótona {xn} ⊂ A \ {α} tal que {xn} → α, se tiene {f(xn)} → L.

La similitud entre las definiciones de continuidad y de límite se concreta en el siguiente hecho
elemental.

Proposición 4.26. Sea f : A→ R y a ∈ A ∩A′. Entonces f es continua en a si, y sólo si,

ĺım
x→a

f(x) = f(a).

Demostración

(⇒) Si f es continua en a, para cualquier sucesión {xn} ⊂ A \ {a} con {xn} → a se
tiene {f(xn)} → f(a). Por la caracterización secuencial del límite, esto es equivalente
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a decir que
ĺım
x→a

f(x) = f(a).

(⇐) Recíprocamente, si ĺımx→a f(x) = f(a), entonces para todo ε > 0 existe δ > 0
tal que 0 < |x − a| < δ ⇒ |f(x) − f(a)| < ε. La desigualdad sigue siendo cierta si
permitimos x = a, luego f es continua en a. ■

Esta equivalencia nos permite identificar un primer tipo de discontinuidades: aquellas en las que
existe el valor del límite en a ∈ A ∩ A′ pero no coincide con f(a). En este caso, redefiniendo
f(a) puede hacerse que la función f sea continua, lo que les da el nombre de discontinuidades
evitables.

Definición 4.27. Decimos que f tiene una discontinuidad evitable en a ∈ A∩A′ cuando existe
el límite ĺımx→a f(x) pero ĺımx→a f(x) ̸= f(a).

x

y

a

L

f(a)

Queda por ver el caso en que α ∈ A′ \A. Aunque no tengamos f definida en α, la existencia
de límite nos permite extender su definición a dicho punto, y la función resultante, además, es
continua en α.

Proposición 4.28. Sea f : A→ R y α ∈ A′ \A. Son equivalentes:

(i) ĺım
x→α

f(x) existe.

(ii) La extensión

f̃ : A ∪ {α} → R, f̃(x) =
{

f(x) si x ∈ A,
ĺımx→α f(x) si x = α.

es continua en α.

Demostración

(i)⇒(ii). Basta aplicar la proposición anterior en α, ya que

f̃(α) = ĺım
x→α

f(x) = ĺım
x→α

f̃(x).

(ii)⇒(i). Sea {xn} ⊂ A (no hace falta eliminar α porque α /∈ A) con {xn} → α. Por
continuidad de f̃ en α,

{f(xn)} = {f̃(xn)} → f̃(α),

y la caracterización secuencial del límite da que ĺımx→α f(x) existe y es f̃(α). ■

A modo de resumen de lo probado anteriormente, enunciamos una proposición que recoge la
relación que existe entre límites y continuidad.
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Proposición 4.29. Sea f : A→ R una función e y ∈ A ∪A′.

Si y ∈ A ∩A′, f es continua en y ⇐⇒ ĺımx→y f(x) = f(y).

Si y ∈ A \A′, f siempre es continua en f(y).

Si y ∈ A′ \A, existe ĺımx→y f(x) ⇐⇒ f puede extenderse de forma continua a y.

■

Al igual que la continuidad, el límite es una propiedad local de f . Esta establece que la existencia
y el valor del límite de una función en un punto α ∈ A′ solo dependen de los puntos de

(α− δ, α+ δ) ∩ (A \ {α}),

para δ > 0 arbitrario.

Proposición 4.30 (Carácter local del límite). Sea f : A→ R, B ⊂ A y β ∈ B′. Entonces:

(i) Si f tiene límite en β, también lo tiene f |B en β y ambos coinciden:

ĺım
x→β

(
f |B

)
(x) = ĺım

x→β
f(x).

(ii) Si existe δ > 0 tal que (β − δ, β + δ) ∩
(
A \ {β}

)
⊂ B, y f |B tiene límite en β, entonces f

tiene límite en β y ambos coinciden.

Demostración

Esta demostración no se vio en clase.

(i) Sea L = ĺımx→a f . Dado ε > 0, si (0 < |x− β| < δ ⇒ |f(x)− L| < ε) se cumple
para todo punto x ∈ A, entonces en particular también para todo punto x ∈ B.

(ii) Sea L = ĺımx→β(f |B)(x). Dado ε > 0, por la definición del límite de f |B existe
η > 0 tal que

x ∈ B, 0 < |x− β| < η =⇒ |(f |B)(x)− L| < ε.

Tomamos r = mı́n{η, δ}. Si x ∈ A y 0 < |x− β| < r, entonces

x ∈ (β − r, β + r) ∩
(
A \ {β}

)
⊂ B,

y además |x− β| < η; por tanto |f(x)− L| =
∣∣(f |B)(x)− L

∣∣ < ε. ■

Ejemplo

Problema. Calcular
ĺım
x→1

x2 + x− 2
x− 1 .

Resolución. En primer lugar, aunque no sea necesario, discutimos por qué tiene
sentido este límite. En efecto, si f(x) = x2+x−2

x−1 , está claro que

Dom(f) = R \ {1} = (−∞, 1) ∪ (1,+∞).
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Por tanto,
1 ∈ Dom(f)′ = (−∞, 1] ∪ [1,+∞) = R.

Sea {xn} ⊂ R \ {1} con {xn} → 1. Para todo n,

x2
n + xn − 2
xn − 1 = (xn − 1)(xn + 2)

xn − 1 = xn + 2,

donde el último paso (dividir por xn − 1 numerador y denominador) puede hacerse ya
que xn ̸= 1. Al pasar al límite,

ĺım
n→∞

x2
n + xn − 2
xn − 1 = ĺım

n→∞
(xn + 2) = 1 + 2 = 3.

Como el valor del límite a lo largo de cualquier sucesión {xn} → 1 con xn ̸= 1 es 3,
concluimos que

ĺım
x→1

x2 + x− 2
x− 1 = 3.

Al igual que cuando estudiábamos la continuidad usando sucesiones monótonas, para estudiar
el comportamiento de una función al acercarnos a un punto de la recta real, podemos analizar
por separado lo que ocurre al aproximarnos por la izquierda o por la derecha. Esto motiva las
definiciones de límites a izquierda y a derecha, que veremos enseguida que no son sino casos
particulares de la noción de límite que ya conocemos.

Dado A ⊂ R y α ∈ R, introducimos la notación

A−
α = {x ∈ A : x < α}, A+

α = {x ∈ A : x > α}.

Razonando por contrarrecíproco, nos damos cuenta inmediatamente de que si α ∈ A′, entonces
α ∈ (A+

α )′ ∪ (A−
α )′, ya que si A no se acumula ni a la izquierda ni a la derecha de α, entonces

no se acumula en α.

A

γ ∈ (A−
γ )′ ∩ (A+

γ )′

β ∈ (A+
β )′

α ∈ (A−
α )′

Definición 4.31 (Límites laterales). Sea f : A→ R.

Si α ∈ (A−
α )′ (esto es, A se acumula a la izquierda de α), decimos que f tiene límite por

la izquierda en α cuando f |A−
α

tiene límite L en α. En tal caso escribimos

ĺım
x→α−

f(x) = L.

Si α ∈ (A+
α )′ (esto es, A se acumula a la derecha de α), decimos que f tiene límite por la

derecha en α cuando f |A+
α

tiene límite L en α. En tal caso escribimos

ĺım
x→α+

f(x) = L.

Por supuesto, las propiedades del límite ordinario se trasladan a los límites laterales, lo que nos
da una triple definición equivalente para los mismo.
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Proposición 4.32. Para f : A→ R, α ∈ (A−
α )′ y L ∈ R, son equivalentes:

(i) ĺım
x→α−

f(x) = L.

(ii) ∀ ε > 0 ∃ δ > 0 :
(
x ∈ A, α− δ < x < α

)
⇒ |f(x)− L| < ε.

(iii) Para toda sucesión {xn} ⊂ A con xn < α y {xn} → α, se tiene {f(xn)} → L.

(iv) Para toda sucesión creciente {xn} ⊂ A\{α} con xn < α y {xn} → α, se tiene {f(xn)} → L.

■

La versión para el límite por la derecha se obtiene sustituyendo en (iv) “creciente” por “decre-
ciente”, x < α por x > α en (iii) y, en (ii), la condición α− δ < x < α por α < x < α+ δ.

La principal utilidad de los límites laterales es su relación con el límite ordinario. Cuando A
se acumula solo a un lado de un punto α ∈ A′, está claro que las nociones de límite y límite
lateral son equivalentes, por lo que el resultado más interesante se tiene cuando A se acumula a
ambos lados de un punto α ∈ A′.

Proposición 4.33. Sea f : A→ R, α ∈ A′ y L ∈ R. Entonces:

(a) Si A se acumula a la izquierda de α pero no a la derecha, entonces

ĺım
x→α

f(x) = L ⇐⇒ ĺım
x→α−

f(x) = L.

(b) Si A se acumula a la derecha de α pero no a la izquierda, entonces

ĺım
x→α

f(x) = L ⇐⇒ ĺım
x→α+

f(x) = L.

(c) Si A se acumula a la izquierda y a la derecha de α, entonces

ĺım
x→α

f(x) = L ⇐⇒ ĺım
x→α−

f(x) = L = ĺım
x→α+

f(x).

Demostración

Las implicaciones hacia la derecha (⇒) son todas inmediatas, pues siempre podemos
pasar del límite de f al límite de una restricción cualquiera usando el carácter local del
límite funcional.

Para las implicaciones a la izquierda (⇐), tomemos una sucesión monótona {xn} ⊂
A \ {α} con {xn} → α:

(a) {xn} no puede ser decreciente por tanto es creciente y xn < α para todo n, de
modo que {f(xn)} → L por el límite por la existencia de límite a la izquierda.

(b) Se sigue de un razonamiento análogo al de (a).
(c) Si {xn} es creciente, usamos el punto (a), y si {xn} es decreciente, el (b). En ambos

casos obtenemos {f(xn)} → L.

La caracterización secuencial del límite ordinario por sucesiones monótonas concluye la
prueba. ■
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Como consecuencia del ítem (c), si los límites laterales a izquierda y a derecha de α no coinciden,
f no puede tener límite en el punto α. En particular, si f presenta este comportamiento en un
punto a ∈ A ∩A′, no puede ser continua en a, independientemente del valor de f(a).

Definición 4.34. Sea f : A→ R y a ∈ A ∩A′ tal que a ∈ (A+
a )′ ∩ (A−

a )′. Si existen los límites
laterales a izquierda y a derecha de a pero

ĺım
x→a−

f(x) ̸= ĺım
x→a+

f(x),

entonces f no es continua en a, y decimos que f tiene una discontinuidad de salto finito en a.

x

y

a

Ejemplo

Problema. Determinar si es posible elegir f(1) para que la función

f(x) = x− 1
|x− 1| , x ̸= 1,

sea continua en x = 1.
Resolución. El dominio de f es A = R \ {1} y 1 ∈ A′, luego para poder extender f de
forma continua a 1 debe existir el límite de f en 1. Dado que A se acumula a izquierda
y derecha de 1, esto es equivalente a que existan y coincidan los límites laterales.
Límite por la izquierda. Tomemos cualquier sucesión {xn} ⊂ A con xn < 1 para todo n
y {xn} → 1. Para x < 1 se tiene |x− 1| = 1− x, luego

xn − 1
|xn − 1| = xn − 1

1− xn
= −1 para todo n,

y por tanto {f(xn)} → −1. Así, ĺım
x→1−

f(x) = −1.

Límite por la derecha. Tomemos ahora {xn} ⊂ A con xn > 1 para todo n y {xn} → 1.
Para x > 1 se tiene |x− 1| = x− 1, luego

xn − 1
|xn − 1| = xn − 1

xn − 1 = 1 para todo n,

y por tanto {f(xn)} → 1. Así, ĺım
x→1+

f(x) = 1.

Como los límites laterales existen pero no coinciden, no existe ĺım
x→1

f(x). En consecuencia,
no hay elección posible de f(1) que haga a f continua en x = 1.

4.4 Límites en el infinito y divergencia de funciones
Nuestro objetivo ahora es extender la noción de límite funcional en dos direcciones. Por un
lado, estudiaremos cómo se comporta una función cuando la variable crece o decrece sin cota,
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introduciendo el límite en el infinito. Por otro, en paralelo con las sucesiones divergentes, veremos
también la divergencia de funciones en puntos de R. Cerraremos con reglas básicas que permiten
interpretar los límites en el infinito como límites ordinarios.

Definición 4.35. Sea A ⊂ R no mayorado, f : A→ R y L ∈ R. Diremos que f tiene límite L
en +∞ si para todo ε > 0, existe K > 0 tal que

x ∈ A, x > K =⇒ |f(x)− L| < ε.

En tal caso, escribimos

ĺım
x→+∞

f(x) = L o f(x)→ L (x→ +∞).

De forma análoga tenemos la definición de límite en −∞.

Definición 4.36. Sea A ⊂ R no minorado, f : A→ R y L ∈ R. Diremos que f tiene límite L
en −∞ si para todo ε > 0, existe K < 0 tal que

x ∈ A, x < K =⇒ |f(x)− L| < ε.

En tal caso, escribimos

ĺım
x→−∞

f(x) = L o f(x)→ L (x→ −∞).

Por supuesto, estas nuevas nociones de límite pueden caracterizarse mediante sucesiones que
divergen a +∞ o −∞. Omitimos la demostración porque sigue la misma idea que la que hicimos
para la continuidad.

Proposición 4.37. Sea A ⊂ R no mayorado, f : A→ R y L ∈ R. Son equivalentes:

(i) ĺım
x→+∞

f(x) = L.

(ii) Para toda sucesión {xn} ⊂ A con {xn} → +∞, se tiene {f(xn)} → L.

(iii) Para toda sucesión creciente y no mayorada {xn} ⊂ A, se tiene {f(xn)} → L.

■

Ejemplo

Problema. Calcular
ĺım

x→+∞

(√
x+
√
x−
√
x
)
.

Resolución. Racionalizamos con el conjugado:√
x+
√
x−
√
x = (x+

√
x)− x√

x+
√
x+
√
x

=
√
x√

x+
√
x+
√
x
.

Como x → +∞, podemos restringirnos a considerar valores de x > 0, lo que nos
permite dividir numerador y denominador por

√
x:

√
x√

x+
√
x+
√
x

=
√
x

√
x
(√

1 + 1√
x

+ 1
) = 1√

1 + 1√
x

+ 1
.
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Como 1√
x
→ 0 cuando x→ +∞, se obtiene

ĺım
x→+∞

(√
x+
√
x−
√
x
)

= 1√
1 + 0 + 1

= 1
2 .

El siguiente resultado nos demuestra que el concepto de límite funcional generaliza al de límite
de una sucesión. Para ver esto basta recordar que una sucesión {xn} no es más que una función
S : N → R con s(n) = xn. Dado que N no está mayorado, tiene sentido hablar de límite
(funcional) en +∞ de la función S:

Proposición 4.38. Sea S : N→ R y L ∈ R. Entonces

ĺım
x→+∞

S(x) = L ⇐⇒ {S(n)} → L.

Demostración

Esta demostración no se vio en clase.

(⇒) Basta tomar la sucesión {n}, que diverge positivamente: por caracterización
secuencial del límite en +∞, {S(n)} → L.

(⇐) Supongamos {S(n)} → L. Sea {yn} ⊂ N una sucesión con {yn} → +∞.

Dado ε > 0, existe n0 ∈ N tal que |S(k)−L| < ε para todo k ≥ n0. Como {yn} → +∞,
existe m ∈ N con yn > n0 para todo n ≥ m, y entonces |S(yn)− L| < ε para n ≥ m.

Por tanto, {S(yn)} → L y, por la caracterización secuencial, ĺımx→+∞ S(x) = L. ■

El carácter local del límite en +∞ se enuncia diciendo que para estudiar el límite de una función
en +∞, basta considerar valores de la variable suficientemente grandes.

Proposición 4.39. Sea f : A→ R y supongamos que A no está mayorado. Fijado ρ > 0, sea
B = {x ∈ A : x > ρ}. Entonces, para cualquier L ∈ R,

ĺım
x→+∞

f(x) = L ⇐⇒ ĺım
x→+∞

(
f |B

)
(x) = L.

Demostración

Esta demostración no se vio en clase.

(⇒) Puesto que ĺımx→+∞ f(x) = L, dado ε > 0 encontramos K > 0 tal que si x > K,
entonces |f(x)− L| < ε. En particular, esto vale para x ∈ B con x > K.

(⇐) Sea {xn} ⊂ A con {xn} → +∞. Por definición de divergencia a +∞, existe n0 ∈ N
de forma que, si n ≥ n0, entonces xn > ρ, luego xn ∈ B. Entonces, para n ≥ n0:

{f(xn)} = {f |B(xn)} → L.

■
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Pasamos ahora al estudio de un tipo concreto de sucesiones que no tienen límite en un
punto de acumulación de su dominio de definición: aquellas en las que las imágenes se hacen
arbitrariamente grandes o pequeñas al acercarnos a dicho punto.

Definición 4.40. Sea f : A→ R y α ∈ A′.

(i) Diremos que f diverge a +∞ en α (y escribiremos f(x)→ +∞ (x→ α)) si

∀K > 0 ∃ δ > 0 : x ∈ A, 0 < |x− α| < δ =⇒ f(x) > K.

(ii) Análogamente, f diverge a −∞ en α (y escribiremos f(x)→ −∞ (x→ α)) si

∀K < 0 ∃ δ > 0 : x ∈ A, 0 < |x− α| < δ =⇒ f(x) < K.

La divergencia de una función en un punto puede caracterizarse mediante sucesiones. Por
supuesto, en este caso se tendrá que la sucesión de imágenes es una sucesión que diverge a +∞.
Damos el resultado para divergencia hacia +∞, pues el otro caso es análogo. La demostración a
estas alturas debería ser un ejercicio sencillo.

Proposición 4.41. Son equivalentes:

(i) f(x)→ +∞ (x→ α).

(ii) Para toda sucesión {xn} ⊂ A \ {α} con {xn} → α, se tiene {f(xn)} → +∞.

(iii) Para toda sucesión monótona {xn} ⊂ A \ {α} con {xn} → α, se tiene {f(xn)} → +∞.

■

Nota: Como en el caso de sucesiones, una función que diverge a ±∞ en un punto está
muy lejos de tener límite allí. No es aconsejable decir que una función tiene límite +∞
en α ni escribir ĺımx→α f(x) = +∞; la formulación que debemos seguir para evitar
confusiones es f(x)→ +∞ cuando x→ α.

Por supuesto, la divergencia a ±∞ en α es una propiedad local cuyo enunciado puede trasladarse
directamente del de límite en α.

Dado α ∈ A′, podemos hablar de divergencia lateral a ±∞ cuando las correspondientes
restricciones de f a izquierda o derecha de α presenten este tipo de divergencia.

Definición 4.42. Sean f : A→ R y α ∈ A′. Entonces:

(i) Si α ∈ (A+
α )′, decimos que f diverge a +∞ por la derecha en α si f |A+

α
→ +∞ cuando

(x→ α). En tal caso, escribimos f(x)→ +∞ (x→ α+).

(ii) Si α ∈ (A−
α )′, decimos que f diverge a +∞ por la izquierda en α si f |A−

α
→ +∞ cuando

(x→ α). En tal caso, escribimos f(x)→ +∞ (x→ α−).

Como cabe esperar, esta noción admite una caracterización K − δ y mediante sucesiones
monótonas, que omitimos por cuestiones de brevedad.

Definición 4.43. Sea f : A→ R y a ∈ A ∩A′ con a ∈ (A+
a )′ ∩ (A−

a )′.

Decimos que f tiene en a una discontinuidad de salto infinito si uno de los límites laterales
existe pero la función diverge a +∞ o −∞ al otro lado de a.
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Decimos que f tiene en a una discontinuidad asintótica en a si f diverge a +∞ o −∞ a
ambos lados de a.

x

y

a
x

y

a

Para completar el esquema, describimos ahora la divergencia de una función en +∞ y en −∞.

Definición 4.44. Sea f : A→ R con A no mayorado.

Diremos que f diverge a +∞ en +∞ y escribiremos f(x)→ +∞ (x→ +∞) si

∀K > 0 ∃M ∈ R : x ∈ A, x > M =⇒ f(x) > K.

Diremos que f diverge a −∞ en +∞ y escribiremos f(x)→ −∞ (x→ +∞) si

∀K < 0 ∃M ∈ R : x ∈ A, x > M =⇒ f(x) < K.

Proposición 4.45. Sea f : A→ R con A no mayorado. Son equivalentes:

(i) f(x)→ +∞ (x→ +∞).

(ii) Para toda sucesión {xn} ⊂ A con {xn} → +∞, se tiene {f(xn)} → +∞.

(iii) Para toda sucesión {xn} ⊂ A creciente y no mayorada, se tiene {f(xn)} → +∞.

■

La noción de divergencia a±∞ en−∞ se obtiene de forma análoga, al igual que la caracterización
mediante sucesiones.

Definición 4.46. Sea f : A→ R con A no está minorado.

f(x)→ +∞ (x→ −∞) si ∀K ∈ R ∃M ∈ R : x ∈ A, x < M =⇒ f(x) > K.

f(x)→ −∞ (x→ −∞) si ∀K ∈ R ∃M ∈ R : x ∈ A, x < M =⇒ f(x) < K.

Proposición 4.47. Sea f : A→ R con A no está minorado. Son equivalentes:

(i) f(x)→ +∞ (x→ −∞).

(ii) Para toda sucesión {xn} ⊂ A con {xn} → −∞, se tiene {f(xn)} → +∞.

(iii) Para toda sucesión {xn} ⊂ A decreciente y no minorada, se tiene {f(xn)} → +∞.

Nuevamente, cambiamos “> K” por “< K” para la divergencia hacia −∞. ■

Finalmente, vemos que podemos transformar un límite en +∞ con uno en −∞ y viceversa,
además de transformar cualquiera de ellos en un límite lateral en 0.
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Proposición 4.48. Sean A ⊂ R no mayorado, f : A→ R y L ∈ R. Admitimos también que L
pueda ser el símbolo +∞ o −∞.

(a) Consideramos g : −A→ R dada por g(x) = f(−x) para todo x ∈ −A. Entonces

f(x)→ L (x→ +∞) ⇐⇒ g(x)→ L (x→ −∞).

Esto suele escribirse de forma más directa como

f(x)→ L (x→ −∞) ⇐⇒ f(−x)→ L (x→ +∞).

(b) Sean B = {y ∈ R+ : 1/y ∈ A} y h : B → R dada por h(y) = f(1/y). Entonces 0 ∈ B′ y

f(x)→ L (x→ +∞) ⇐⇒ h(y)→ L (y → 0+),

es decir,
f(x)→ L (x→ +∞) ⇐⇒ f(1/y)→ L (y → 0+).

Combinando (a) y (b) podemos transformar un límite en −∞ en un límite en 0 por la izquierda.

Demostración

Esta demostración no se vio en clase.

(a) Sea {xn} ⊂ A con {xn} → +∞, entonces {−xn} ⊂ −A y {−xn} → −∞. Así,
{f(xn)} → L equivale a {g(xn)} → L. El otro sentido se hace de forma idéntica.

(b) (⇒) Sea {yn} ⊂ B una sucesión con {yn} → 0. Entonces, 1
yn
∈ A y {yn} → +∞.

Por tanto
{
f
(

1
yn

)}
= h(yn)→ L.

(⇐) Recíprocamente, si {xn} ⊂ A con xn → +∞, entonces existe m ∈ N de forma que
xn > 0 para n ≥ m. Entonces, para n ≥ m se tiene { 1

xn
} ⊂ A,

{
1
xn

}
→ 0. Por tanto,

{f(xn)} = {h( 1
xn

)} → L. ■

Ejemplo

Problema. Determinar razonadamente si existe

ĺım
x→0

x e1/x.

Resolución. Tenemos que Dom(xe1/x) = R∗, que se acumula a la izquierda y a la
derecha de 0. Por tanto, podemos estudiar los límites laterales x → 0+ y x → 0−.
Usamos el cambio y = 1/x, de modo que

x e1/x = ey

y
.

Límite por la izquierda. Si x→ 0− entonces y = 1/x→ −∞ y

ĺım
x→0−

x e1/x = ĺım
y→−∞

ey

y
= 0.
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Límite por la derecha. Si x→ 0+ entonces y = 1/x→ +∞ y

ey

y
→ +∞,

lo que nos da xe1/x → +∞ cuando x→ 0+.
Como uno de los límites laterales no existe, el límite no existe.

Nota. En el ejemplo anterior hemos usado que

ĺım
x→+∞

xp

ax
= 0 (a > 1, p > 0).

Hasta ahora solo hemos justificado esta afirmación cuando x = n ∈ N y p ∈ N. La
versión general con x ∈ R se demostrará más adelante, cuando dispongamos de una
definición rigurosa de las funciones exponencial, logaritmo y potencia. Mientras tanto,
la daremos por conocida para poder presentar ejemplos no triviales de la utilidad del
cambio de variable.

4.5 Propiedades de las funciones continuas
Estudiaremos dos resultados fundamentales sobre funciones continuas en intervalos reales. El
primero afirma que si una función continua toma dos valores dentro de un intervalo, entonces
toma también todos los valores intermedios; dicho de otro modo, las funciones continuas
transforman intervalos en intervalos. El segundo identifica un caso especialmente importante: si
el intervalo de partida es cerrado y acotado, su imagen también lo es; en particular, la función
alcanza un máximo y un mínimo. Este puede considerarse el primer resultado de optimización
que se verá en el curso de cálculo.

Empezamos con una sencilla observación: si una función continua es positiva en un punto, se
mantiene positiva en un pequeño entorno de dicho punto. A esto se le llama propiedad de
conservación del signo.

Proposición 4.49. Sea f : A → R una función continua en un punto x ∈ A. Si f(x) > 0,
entonces existe δ > 0 tal que, para todo y ∈ A con |y− x| < δ, se tiene f(y) > 0. Análogamente,
si f(x) < 0, entonces existe δ > 0 tal que |y − x| < δ ⇒ f(y) < 0.

Demostración

Si f(x) > 0, tomando ε = f(x) en la caracterización (ε−δ) de la continuidad, existe
δ > 0 tal que |y − x| < δ, entonces:

|f(y)− f(x)| < f(x) ⇒ −f(x) < f(y)− f(x) ⇒ f(y) > 0.

El caso f(x) < 0 se reduce al anterior aplicándolo a −f , que es continua en x y verifica
(−f)(x) > 0. ■

Teorema 4.50 (de los ceros de Bolzano). Sean a, b ∈ R con a < b y f : [a, b] → R una
función continua tal que f(a) < 0 y f(b) > 0. Entonces existe c ∈ (a, b) tal que f(c) = 0.
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Demostración

Sea C = {x ∈ [a, b] : f(x) < 0}. El conjunto C es no vacío (contiene a a) y está
acotado, luego podemos considerar c = supC ∈ [a, b]. La idea es probar que f(c) = 0.

x

y

f(a) < 0

f(b) > 0
a c b

C = {x ∈ A : f(x) < 0}

Razonamos por reducción al absurdo: si f(c) < 0, entonces por conservación del signo
existe un δ > 0 tal que si x ∈ [a, b] y |x − c| < δ ⇒ f(x) < 0. Nos damos cuenta de
que c + δ ≤ b, pues si se tuviera c ≤ b < c + δ entonces f(b) < 0, que contradice
nuestra hipótesis f(b) > 0. Si tomamos x ∈ (c, c+ δ) obtenemos un x ∈ [a, b], x > c,
con f(x) < 0, que contradice que c sea el supremo de C.

Supongamos ahora que f(c) > 0, de nuevo por conservación del signo existiría δ > 0
tal que |x − c| < δ ⇒ f(x) > 0. Entonces, todos los puntos de x ∈ C deben cumplir
|x− c| ≥ δ. Además, como c es el supremo de C, también ha de darse x ≤ c, es decir,
|x− c| = c− x. Combinando esta información tenemos que

x ∈ C ⇒ x ≤ c− δ.

Esta desigualdad nos dice que c− δ es un mayorante de C, lo cual es imposible porque
c− δ < c.

Concluimos f(c) = 0. ■

Por supuesto, el teorema sigue siendo cierto si f(a) > 0 y f(b) < 0, ya que basta con aplicar la
versión anterior a −f .

Además, el teorema de Bolzano puede trasladarse para encontrar valores de f entre f(a) y f(b),
siempre que estos sean distintos. La forma clásica de enunciar esta propiedad es la que sigue:

Teorema 4.51 (del Valor Intermedio). Sea f : A→ R una función continua. Si I ⊂ A es un
intervalo, entonces f(I) es un intervalo. Esto es, si α, β ∈ f(I) con α < β entonces [α, β] ⊂ f(I).

Demostración

Basta comprobar que si α, β ∈ f(I) con α < β y λ ∈ (α, β), entonces λ ∈ f(I).

Sean x, y ∈ I tales que f(x) = α y f(y) = β. Como f(x) ̸= f(y), no puede darse x = y.
Así pues, distinguimos casos según el orden de x e y.

Si x < y, consideramos [x, y] ⊂ I y la función continua g(t) = f(t) − λ en [x, y]. Se
tiene g(x) = α− λ < 0 y g(y) = β − λ > 0. Por el teorema de Bolzano, existe c ∈ (x, y)
con g(c) = 0, es decir, f(c) = λ ∈ f(I).

El caso y < x es idéntico usando [y, x] y la función g(t) = λ− f(t). ■
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El teorema anterior motiva la siguiente definición:

Definición 4.52. Sea I un intervalo no trivial y f : I → R. Decimos que f tiene la propiedad
del valor intermedio si, para todo subintervalo J ⊂ I, f(J) es un intervalo.

Por supuesto, si f : A→ R es una función continua e I ⊂ A es un intervalo no trivial, entonces
f |I satisface la propiedad del valor intermedio, ya que f |J sigue siendo continua para todo
J ⊂ I, y por tanto f |I(J) = f |J(J) es un intervalo por el teorema del valor intermedio.

Lo interesante de esta distinción es que el recíproco no es cierto; existen funciones que satisfacen
la propiedad del valor intermedio sin ser continuas, aunque en estos momentos no disponemos
de las herramientas necesarias para definirlas de forma sencilla. Queda pues prometido este
contraejemplo para capítulos posteriores del curso.

Lo que sí podemos ver sin apenas esfuerzo es que no es suficiente con que f(I) sea un intervalo
para que f : I → R tenga la propiedad del valor intermedio:

Contraejemplo. Sea f : [0, 1]→ R dada por

f(x) =
{

1− x si x ∈ (0, 1],
0 si x = 0.

Tenemos de forma clara f([0, 1]) = [0, 1), que es un intervalo, Sin embargo, tomando
J = [0, 1

2 ] ⊂ I, se tiene f(J) = {0} ∪ [1
2 , 1), que no es un intervalo.

Por otro lado, la hipótesis de que I sea un intervalo es fundamental para garantizar que f(I) es
un intervalo para una función continua f , como ilustra el siguiente resultado:

Proposición 4.53. Si A ⊂ R no es un intervalo, existe una función continua f : A → R tal
que f(A) tiene exactamente dos elementos.

Demostración

Esta demostración no se vio en clase.

Como A no es un intervalo, existen x, y ∈ A y z ∈ R \ A con x < z < y. Definimos
f : A→ R por

f(t) = t− z
|t− z|

∀ t ∈ A.

El denominador no se anula (porque z /∈ A) y f es cociente de funciones continuas,
luego es continua en A. Además |f(t)| = 1, así que f(t) ∈ {−1, 1} para todo t ∈ A, y
como f(y) = 1 y f(x) = −1, resulta f(A) = {−1, 1}. ■

Como motivación para la segunda propiedad fundamental de las funciones continuas, nos
preguntamos si, en el teorema del valor intermedio, puede conocerse el tipo de intervalo f(I) a
partir del tipo de I. En general no hay relación: por ejemplo, una función constante transforma
cualquier intervalo en un intervalo cerrado y acotado formado por un único punto, por lo que la
acotación de f(I) no nos da ninguna información sobre la de I.
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Un ejemplo menos trivial es la función f : R→ R dada por

f(x) = x

1 + |x| .

No es difícil demostrar que f es continua e inyectiva con f(R) = (−1, 1), y su inversa, que es la
función f−1 : (−1, 1)→ R dada por

f−1(y) = 1
1− |y|

también es continua y envía el intervalo acotado (−1, 1) en R, que no está ni mayorado ni
minorado.

Tampoco se conserva ser abierto o cerrado: el valor absoluto lleva (−1, 1) a [0, 1), y con
I = [1,+∞) y f(x) = 1/x aparece f(I) = (0, 1], que no es cerrado.

Sin embargo, hay un caso que sí se preserva: cuando I es cerrado y acotado, también lo es f(I).
Esto es precisamente el contenido del teorema de Weierstrass.

Teorema 4.54 (de Weierstrass). Sean a, b ∈ R con a < b y sea f : [a, b]→ R una función
continua. Entonces, el intervalo f([a, b]) es cerrado y acotado.

Demostración

Empezamos probando que f([a, b]) es un conjunto acotado, es decir, que el conjunto
{|f(x)| : x ∈ [a, b]} está mayorado.

Razonamos por contradicción: si no está mayorado, para cada n ∈ N existe xn ∈ [a, b] tal
que |f(xn)| > n. Como {xn} es una sucesión acotada, el teorema de Bolzano-Weierstrass
nos proporciona una sucesión parcial convergente: {xσ(n)} → x ∈ R.

Como a ≤ xn ≤ b para todo n, es claro que x ∈ [a, b], lo que nos permite usar que f es
continua en x, para concluir que {f(xσ(n))} → f(x). Pero esto es una contradicción,
ya que |f(xσ(n))| > σ(n) ≥ n para todo n ∈ N, luego {f(xσ(n))} → +∞.

Sabido que el intervalo J = f([a, b]) está acotado, tomamos α = ı́nf J , β = sup J y
tenemos (α, β) ⊂ J ⊂ [α, β], luego bastará probar que α, β ∈ J para concluir que
J = [α, β], un intervalo cerrado y acotado.

Para cada n ∈ N, puesto que α + 1/n no es minorante del conjunto f([a, b]), por
definición de ínfimo existirá un yn ∈ [a, b] verificando que α < f(yn) < α + 1/n.
Obtenemos así una sucesión {yn} de puntos de [a, b] tal que {f(yn)} → α.

Aplicando aquí una vez más el teorema de Bolzano–Weierstrass, obtenemos una sucesión
parcial {yτ(n)} → y ∈ [a, b]. Puesto que f es continua en el punto y, deducimos que
{f(yτ(n))} → f(y). Ahora bien, {f(yτ(n))} es una sucesión parcial de {f(yn)}, luego
{f(yτ(n))} → α y concluimos que α = f(y) ∈ f([a, b]), como queríamos.

Para comprobar que también β ∈ f([a, b]) se razona de manera completamente análoga.
■

Al igual que hicimos con sucesiones, definimos a continuación la monotonía de una función de
la forma que cabría esperarse. Veremos entonces dos resultados que relacionan la monotonía
de una función y su continuidad, y como consecuencia, un tercero que nos permite deducir la
continuidad de la función inversa de una función inyectiva.
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Definición 4.55. Sea f : A→ R. Diremos que f es

creciente si: x, y ∈ A, x < y ⇒ f(x) ≤ f(y).

estrictamente creciente si: x, y ∈ A, x < y ⇒ f(x) < f(y).

decreciente si: x, y ∈ A, x < y ⇒ f(x) ≥ f(y).

estrictamente decreciente si: x, y ∈ A, x < y ⇒ f(x) > f(y).

monótona si f es creciente o decreciente.

estrictamente monótona si f es estrictamente creciente o estrictamente decreciente.

Es fácil observar que las únicas funciones crecientes y decrecientes a la vez son las constantes.
Nótese también que una función es estrictamente monótona si es monótona e inyectiva.

Para trabajar con comodidad, dado B ⊂ A, decimos que f es creciente en B si f |B es una
función creciente, con idéntica definición para las otras 5 propiedades vistas.

Por ejemplo, la función valor absoluto x 7→ |x| es decreciente en (−∞, 0] y creciente en [0,+∞),
pero no es monótona en R.

Sabemos que toda función estrictamente monótona es inyectiva. A poco que se piense, el recíproco
es falso en general. Sin embargo, podemos obtenerlo bajo ciertas condiciones adicionales.

Teorema 4.56. Sea I un intervalo y f : I → R una función continua e inyectiva. Entonces f
es estrictamente monótona.

La demostración de este resultado es técnica, y conviene dividirla en varios pasos para que sea
más fácil de leer y comprender.

Lema 4.57 (Lema 1). Dados a, b ∈ R con a < b, si f : [a, b] → R es una función continua e
inyectiva, tal que f(a) < f(b), entonces f(a) ≤ f(x) ≤ f(b) para todo x ∈ [a, b].

Demostración del lema

Razonemos por reducción al absurdo:

Si f(x) < f(a), aplicamos el teorema del valor intermedio a f |[x,b] que es continua y
toma los valores f(x) y f(b), luego debe tomar también el valor intermedio f(a). Por
tanto, existe z ∈ [x, b] tal que f(z) = f(a), pero esto contradice la inyectividad de f ,
ya que a ̸= z.

Análogamente, si fuese f(x) > f(b) aplicaremos el teorema del valor intermedio a
f |[a,x], obteniendo z ∈ [a, x] con f(z) = f(b), contradiciendo otra vez la inyectividad
de f . ■

Lema 4.58 (Lema 2). La función del Lema 4.57 es creciente.

Demostración

Dados x, y ∈ [a, b] con x < y, por el primer lema tenemos f(x) ≤ f(b), de hecho
f(x) < f(b), ya que x < b y f es inyectiva. Pero ahora podemos aplicar el mismo lema
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a f |[x,b], que es continua e inyectiva, con f(x) < f(b), obteniendo f(x) ≤ f(y), como
queríamos. ■

Demostración del teorema

Esta demostración no se vio en clase.

Basta probar que f es monótona, pues de la inyectividad se deduce que la monotonía
es estricta. Empezamos observando que el Lema 4.58 nos resuelve directamente el caso
en que I es un intervalo no trivial cerrado y acotado [a, b].

En efecto, si f(a) < f(b), entonces aplicamos el resultado al pie de la letra. Si en
cambio f(a) > f(b), aplicamos dicho lema a la función −f . Por supuesto, f(a) = f(b)
no puede tenerse ya que f es inyectiva.

Vamos al caso general: I es un intervalo arbitrario y f : I → R es continua e inyectiva.
Razonando por reducción al absurdo, si f no es monótona, existen x1, y1, x2, y2 ∈ I
tales que:

x1 < y1, x2 < y2, f(x1) > f(y1), f(x2) < f(y2).

Escribiendo a = mı́n{x1, x2} < máx{y1, y2} = b, por ser I un intervalo, tenemos
[a, b] ⊂ I, lo que permite considerar f |[a,b], que es continua e inyectiva. Como
x1, y1, x2, y2 ∈ [a, b], dicha función no puede ser monótona, lo cual contradice di-
rectamente lo demostrado en el paso anterior. ■

De la monotonía de una función también puede pasarse a la continuidad. El siguiente resultado
no requiere que f esté definida en un intervalo, pero sí que lo sea su imagen.

Teorema 4.59. Si f : A→ R es una función monótona, y f(A) es un intervalo, entonces f es
continua.

Demostración

Esta demostración no se vio en clase.

Podemos evidentemente suponer que f es creciente, pues en otro caso bastaría usar la
función −f , cuya imagen también es un intervalo.
Fijado x ∈ A, para probar que f es continua en el punto x, tomamos una sucesión
monótona {xn} de puntos de A tal que {xn} → x y bastará ver que {f(xn)} → f(x).
Cubriremos solo el caso en que {xn} es una sucesión creciente, pues el otro se sigue de
un razonamiento enteramente análogo.
Por ser {xn} creciente, para todo n ∈ N tenemos xn ≤ xn+1 ≤ x, luego f(xn) ≤
f(xn+1) ≤ f(x), ya que f es creciente. Por tanto, la sucesión {f(xn)} es creciente y
mayorada por f(x), luego convergente. Escribimos

L = ĺım
n→+∞

f(xn).

En principio tenemos que L ≤ f(x), pero en seguida vemos que suponer que L < f(x)
nos lleva a una contradicción.
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En efecto, si tomamos un y ∈ R tal que L < y < f(x), tenemos f(x1) < y < f(x) y,
usando que f(A) es un intervalo, deberá existir a ∈ A tal que f(a) = y.

Si fuese x < a el crecimiento de f nos daría f(x) ≤ f(a) = y, que no es cierto. Pero si
se tuviese a < x, como {xn} → x, podríamos tomar m ∈ N tal que a < xm, con lo que
y = f(a) ≤ f(xm) < L, que tampoco puede ser cierto.

Hemos demostrado que L = f(x), es decir, {f(xn)} → f(x) como queríamos.
■

Conviene resaltar que, en el teorema anterior, el conjunto A no tiene por qué ser un intervalo.

Para una función continua e inyectiva, es natural preguntarse si la inversa también será continua.
Usando la relación entre las gráficas de f y de f−1 es fácil convencerse de que esto no tiene por
qué ser siempre así.

Sean A = [0, 1[ ∪ {2} y f : A→ R dada por

f(x) =

x, x ∈ [0, 1[,
1, x = 2.

El carácter local de la continuidad nos dice inmediatamente que f es continua, y también es
fácil comprobar que f es inyectiva, con f(A) = [0, 1]. La inversa f−1 : [0, 1]→ R viene dada por

f−1(y) =

y, y ∈ [0, 1[,
2, y = 1.

Tomando la sucesión {yn} con yn = 1− 1
n se tiene {yn} → 1 pero {f−1(yn)} = {yn} → 1 ̸= 2 =

f−1(1). Por tanto, f−1 no es continua en 1. Las gráficas ayudan a visualizar que f es continua
mientras que f−1 no lo es:

x

y

1

1

2

2

Gráfica de f

y

x

1

1

2

2

Gráfica de f−1

Como podemos adivinar, esta situación es posible porque A no es un intervalo. El resultado al
que queremos llegar afirma que, siempre que A sea un intervalo y f continua e inyectiva, f−1

también será continua. Para ello, necesitamos un resultado preliminar que es interesante por sí
mismo.

Proposición 4.60. Si f : A→ R es una función estrictamente creciente, entonces f−1 : f(A)→
R también es estrictamente creciente. Si f es estrictamente decreciente, f−1 también lo es.
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Demostración

Esta demostración no se vio en clase.

Supongamos que f es estrictamente creciente. Tomamos u, v ∈ f(A) con u < v y sean
x = f−1(u), y = f−1(v). Si fuese y ≤ x, aplicando que f es creciente tendríamos
v = f(y) ≤ f(x) = u, que es una contradicción, luego deberá ser x < y, es decir,
f−1(u) < f−1(v). Esto prueba que f−1 es estrictamente creciente, como queríamos.
En el caso de que f sea estrictamente decreciente, se razona de forma enteramente
análoga. ■

Teorema 4.61. Si I es un intervalo y f : I → R es estrictamente monótona, entonces f−1 es
continua. En particular, si f es continua e inyectiva, entonces f−1 es continua.

Demostración

Esta demostración no se vio en clase.

En efecto, acabamos de ver que f−1 : f(I)→ R también es estrictamente monótona,
pero su imagen es un intervalo, ya que f−1(f(I)) = I, luego f−1 es continua. ■



Capítulo 5

Funciones derivables

La noción de límite aparece por primera vez en la antigua Grecia, en el contexto de los problemas
de cuadratura y rectificación, en los que se pretenden medir el perímetro y el área de una
figura plana curvilínea. Eudoxo y Arquímedes propusieron el método de exhaución, mediante el
cual se aproximaron áreas y perímetros de figuras curvilíneas mediante polígonos inscritos y
circunscritos cada vez más finos, en lo que puede considerarse una idea primitiva del concepto
de paso al límite.

La cuestión geométrica de aproximar contornos curvilíneos a través de rectas aparece tácitamente
en lo que consideramos uno de los primeros antecedentes para la noción de derivada, que es el
problema de las tangentes: dada una curva y un punto sobre la misma, hallar la recta que mejor
aproxima a la curva en ese punto.

Fermat aborda este problema con su método de la adecuación, que era un algoritmo diseñado
para encontrar extremos de funciones: se escribe f(a+ h) en función de f(a) y se aplican las
mismas reglas que para el cálculo de extremos, esto es, se desprecian en un cierto sentido los
términos de orden superior a h. Su condición conduce, en notación moderna, a que la pendiente
buscada sea el límite de las pendientes de las secantes.

Para ilustrarlo, consideremos la siguiente situación simplificada: sea I ⊂ R un intervalo no
trivial y f : I → R continua. El teorema del valor intermedio nos permite interpretar la gráfica

Gr(f) = {(x, f(x)) ∈ R2 : x ∈ I}

como una curva del plano. El problema consiste por tanto en encontrar, para un punto dado
a ∈ I, la recta tangente a Gr(f) en (a, f(a)). El método de Fermat sugiere considerar rectas
secantes que pasan por (a, f(a)) y (b, f(b)) para b ∈ I con b ≠ a, y estudiar qué ocurre cuando
b se aproxima a a.

99



Capítulo 5. Funciones derivables 100

x

y

(a, f(a))
(b, f(b))

La ecuación punto-pendiente de una recta de R2 que pasa por (a, f(a)) tiene la forma

y − f(a) = m(x− a).

Si imponemos que dicha recta pase por un punto (b, f(b)) con b ̸= a, obtenemos

f(b)− f(a) = m(b− a) =⇒ m = f(b)− f(a)
b− a

.

Por tanto, la pendiente de la recta tangente será la magnitud obtenida al calcular

ĺım
b→a

f(b)− f(a)
b− a

,

que es lo que solemos denotar como f ′(a) cuando dicho límite es un número real.

Paralelamente, Descartes, quien era muy crítico con los razonamientos de Fermat, llegó a la
misma conclusión usando su método de las normales. Según este, se debería tomar otro punto
variable sobre la curva, y calcular la ecuación de una circunferencia con centro (0, 0) que pase
por ambos puntos. La ecuación que determina las intersecciones entre la circunferencia y la
curva es de segundo grado, así que para hallar la circunferencia tangente bastaba con igualar
el discriminante a cero. Conocido el centro, se determinaban fácilmente las rectas normal y
tangente a la curva en el punto.

Casi al mismo tiempo, la física impulsa la misma idea desde otra dirección: describir tasa de
variación instantánea. La velocidad de un móvil, concebida inicialmente como media en un
intervalo de tiempo, debe definirse en el instante. Esto obliga a pasar del cociente incremental

∆s
∆t a ĺım

∆t→0

∆s
∆t ,

que puede entenderse como la versión física de la pendiente de la secante que desemboca en la
pendiente de la tangente.

Analíticamente, puede comprobarse que la recta tangente a Gr(f) en (a, f(a)) es la mejor
aproximación afín de f cerca de a. Conocida la ecuación que determina su gráfica, es fácil
calcular cuál es esta función, que no es otra que:

r(x) = f(a) + f ′(a)(x− a).

Más concretamente, r(x) es el único polinomio de primer grado que cumple

ĺım
x→a

f(x)− r(x)
x− a

= 0.
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La identidad anterior puede leerse como sigue: el error cometido al aproximar f(x) por r(x)
cerca de a es de orden inferior a x− a.

La lectura geométrica y la analítica son, por tanto, dos caras de la misma moneda: la existencia
de f ′(a) asegura que f es localmente “casi lineal”, y la pendiente de esa linealización coincide
con la de la recta tangente en (a, f(a)).

5.1 Definición de derivada
Iniciamos el estudio del cálculo diferencial introduciendo el concepto de derivada de una función,
que se obtiene como el límite concreto que acabamos de introducir. Nuestros primeros resultados
consistirán en la relación entre derivada y continuidad, y la importancia de las derivadas laterales,
en analogía con los límites laterales.

Definición 5.1. Sea f : A→ R y a ∈ A ∩A′. Consideramos la función

fa : A \ {a} −→ R, fa(x) = f(x)− f(a)
x− a

.

Como a ∈ (A \ {a})′, podemos preguntarnos si fa tiene límite en a. Pues bien, se dice que f es
derivable en a si fa tiene límite en a. En tal caso, dicho límite recibe el nombre de derivada de
f en a y se denota por

f ′(a) = ĺım
x→a

f(x)− f(a)
x− a

.

Dado B ⊆ A ∩A′, decimos que f es derivable en B si es derivable en todo punto de B.

Sea A1 ⊆ A ∩ A′ el conjunto de puntos donde f es derivable. Si A1 ≠ ∅, podemos definir la
función derivada de f como

f ′ : A1 −→ R, x 7−→ f ′(x) = ĺım
y→x

f(y)− f(x)
y − x

.

Resaltamos que no tiene sentido discutir la derivabilidad de una función en puntos
donde no está definida ni en sus puntos aislados. El caso más interesante es cuando A
es un intervalo no trivial de R, ya que A ⊆ A′ y, por tanto, podemos hablar de derivada
en todo punto de A.

Como los límites son invariantes por traslaciones, podemos hacer el cambio de variable x = a+h,
de modo que si x→ a entonces h→ 0, y obtenemos una definición equivalente de derivada que
a veces resulta útil para hacer los cálculos:

f ′(a) = ĺım
h→0

f(a+ h)− f(a)
h

.

Proposición 5.2. Si f : A→ R es derivable en a ∈ A ∩A′, entonces f es continua en a.

Demostración

La demostración es bien sencilla. Como a ∈ A∩A′, será continua en a si ĺımx→a f(x) =



Capítulo 5. Funciones derivables 102

f(a), y vemos que

ĺım
x→a

(
f(x)− f(a)

)
= ĺım

x→a

f(x)− f(a)
x− a

(x− a) = f ′(a) · 0 = 0.

Dicho en modo equivalente, si f no es continua en a, no puede ser derivable en a. ■

El carácter local del límite funcional se traslada inmediatamente a la derivada. Nótese que en
esta proposición no necesitamos eliminar el punto base del subconjunto B, pues f |B tiene que
estar definida en dicho punto.

Proposición 5.3 (Carácter local de la derivabilidad). Sean f : A→ R una función, B ⊂ A y
b ∈ B ∩B′ ⊂ A ∩A′.

(i) Si f es derivable en b, entonces f |B es derivable en b, con (f |B)′(b) = f ′(b).

(ii) Si f |B es derivable en b y existe δ > 0 tal que (b − δ, b + δ) ∩ A ⊂ B, entonces f es
derivable en b.

Como en otras situaciones previas, el carácter local suele aplicarse tomando un intervalo abierto
I de R tal que b ∈ I y

B = I ∩A,

con lo que f es derivable en b si, y sólo si, lo es f |B, en cuyo caso ambas derivadas coinciden.

Usando límites laterales llegamos lógicamente a las derivadas laterales. Recordamos que el
estudio de estos sólo tiene interés cuando A se acumula a ambos lados del punto en cuestión.
Por tanto, para estudiar las derivadas laterales nos restringimos a ese único caso que interesa.

Definición 5.4. Sea a ∈ A ∩A′ ∩ (A+
a )′ ∩ (A−

a )′. Decimos que f es derivable por la izquierda
en a si fa tiene límite en a por la izquierda, y derivable por la derecha en a si fa tiene límite
por la derecha en a. En esos casos, escribimos

f ′(a+) = ĺım
x→a+

f(x)− f(a)
x− a

y f ′(a−) = ĺım
x→a−

f(x)− f(a)
x− a

.

La relación entre el límite ordinario y los límites laterales nos da directamente la siguiente
relación:

Proposición 5.5. Para L ∈ R se tiene f ′(a) = L ⇐⇒ f ′(a+) = f ′(a−) = L. ■

Las derivadas laterales permiten precisar aún más la relación con la continuidad, como muestra
el siguiente resultado.

Proposición 5.6. Si existe f ′(a+), entonces ĺımx→a+ f(x) = f(a), y si existe f ′(a−), entonces
ĺımx→a− f(x) = f(a). En particular, si existen ambas derivadas laterales, aunque no coincidan,
f es continua en a. ■

Ejemplo

Problema. Sea f : R→ R dada por f(x) = ax2 + bx+ c. Probar que f es derivable
en R con derivada f ′(x) = 2ax+ b.
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Resolución. Para y ̸= x consideramos el cociente incremental:

f(y)− f(x)
y − x

= a(y2 − x2) + b(y − x)
y − x

= a(y + x) + b.

Haciendo y → x obtenemos

f ′(x) = ĺım
y→x

(
a(y + x) + b

)
= 2ax+ b, ∀x ∈ R.

Como caso particular, si a = b = 0 la función es constante f = c y entonces f ′(x) = 0
para todo x ∈ R.

Ejemplo

Problema. Sea f : R→ R dada por f(x) = |x|. Probar que f es derivable en R∗ y no
en 0, con derivada

f ′(x) = sgn(x) = x

|x|
= |x|

x
=

1, x > 0,
−1, x < 0.

Resolución. Por el carácter local de la derivabilidad, f es derivable en R+ ya que
f |R+(x) = x, y se tiene f ′(x) = 1. Análogamente, f es derivable en R− con f ′(x) = −1.
En x = 0 calculamos las derivadas laterales:

f ′(0+) = ĺım
x→0+

|x|
x

= ĺım
x→0+

x

x
= 1, f ′(0−) = ĺım

x→0−

|x|
x

= ĺım
x→0−

−x
x

= −1.

Existen ambas derivadas laterales pero no coinciden, luego f no es derivable en 0
(aunque sí es continua en 0).

5.2 Reglas de derivación
Pasamos a presentar las reglas de cálculo de derivadas, que a su vez nos permitirán ampliar el
catálogo de funciones derivables que conocemos. Empezamos naturalmente con la suma y el
producto de funciones derivables.

Proposición 5.7. Sean f, g : A→ R funciones derivables en un punto a ∈ A ∩A′. Entonces:

(i) La función f + g es derivable en a, con (f + g)′(a) = f ′(a) + g′(a).

(ii) (Regla de Leibniz) La función fg es derivable en a, con (fg)′(a) = f ′(a)g(a) + f(a)g′(a).

(iii) Para λ ∈ R, la función λf es derivable en a con (λf)′(a) = λf ′(a).

Demostración

(i) Para x ∈ A \ {a},
(f + g)(x)− (f + g)(a)

x− a
= f(x)− f(a)

x− a
+ g(x)− g(a)

x− a
,
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y pasando a límite cuando x→ a se obtiene (f + g)′(a) = f ′(a) + g′(a).
(ii) De nuevo, para x ∈ A \ {a},

(fg)(x)− (fg)(a)
x− a

= f(x)− f(a)
x− a

g(x) + f(a) g(x)− g(a)
x− a

.

Como g es continua en a, ĺımx→a g(x) = g(a), y tomando límites:

ĺım
x→a

(fg)(x)− (fg)(a)
x− a

= f ′(a)g(a) + f(a)g′(a).

(iii) Basta aplicar (ii) al producto con g ≡ λ, usando que g′(a) = 0. ■

Vemos ahora la regla de derivación de un cociente.

Proposición 5.8. Sean f, g : A → R dos funciones derivables en un punto a ∈ A ∩ A′.
Supongamos que g(a) ̸= 0 y sea

B = {x ∈ A : g(x) ̸= 0}.

Entonces a ∈ B ∩B′ y la función f/g : B → R es derivable en a con(
f

g

)′
(a) = f ′(a)g(a)− f(a)g′(a)

g(a)2 .

Demostración

Como g es continua en a y g(a) ̸= 0, por conservación del signo tenemos un δ > 0 tal
que g(x) ̸= 0 en (a− δ, a+ δ) ∩A. Así (a− δ, a+ δ) ∩A ⊂ B y a ∈ B ∩B′, lo que nos
permite estudiar la diferenciabilidad en a restringiendo f/g a B, por su carácter local.

Para x ∈ B \ {a} escribimos

(f/g)(x)− (f/g)(a)
x− a

= f(x)g(a)− f(a)g(x)
g(x)g(a)(x− a) = (f(x)− f(a))g(a)− f(a) (g(x)− g(a))

g(x)g(a)(x− a) .

Tomando límites y usando la derivabilidad de f y g en a (y que g(x)→ g(a) ̸= 0),

ĺım
x→a

(f/g)(x)− (f/g)(a)
x− a

= f ′(a)g(a)− f(a)g′(a)
g(a)2 .

■

Las reglas anteriores nos permiten deducir fácilmente la derivabilidad de las funciones racionales.
Empezamos probando por inducción cómo se deriva un monomio de grado k ∈ N.

Ejemplo

Para cada k ∈ N, la función fk : R→ R, fk(x) = xk, es derivable en R y
f ′
k(x) = k xk−1 ∀x ∈ R.

Resolución. Por inducción en k. El caso k = 1 está hecho en un ejemplo anterior.
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Supongamos cierta la fórmula para k ∈ N y consideremos fk+1(x) = xk+1 = x · xk. Por
la regla del producto,

f ′
k+1(x) =

(
x
)′
xk + x

(
xk
)′ = 1 · xk + x · kxk−1 = (k + 1)xk,

como queríamos.

Usando el ejemplo recién probado y la regla de derivación de la suma, es fácil adivinar que
las funciones polinómicas son derivables y cómo se obtienen sus funciones derivadas. Más en
general, tenemos:

Proposición 5.9. Sea f : A→ R una función racional, esto es,

f(x) = P (x)
Q(x) ∀x ∈ A,

donde P y Q son polinomios y Q(x) ̸= 0 para todo x ∈ A. Suponiendo A ∩A′ ≠ ∅, la regla del
cociente garantiza que f es derivable en A ∩A′ y

f ′(x) = P ′(x)Q(x)− P (x)Q′(x)
Q(x)2 ∀x ∈ A ∩A′.

■

Proposición 5.10 (Regla de la cadena). Sean f : A → R y g : B → R con f(A) ⊂ B. Sea
a ∈ A∩A′ y b = f(a), y supongamos además que b ∈ B′. Si f es derivable en a y g es derivable
en b, entonces g ◦ f es derivable en a y

(g ◦ f)′(a) = g′(b) f ′(a) = g′(f(a)) f ′(a).

Demostración

Definimos la función Φ : B → R por

Φ(y) =


g(y)− g(b)
y − b

si y ̸= b,

g′(b) si y = b.

Como g es derivable en b, la función Φ es continua en b. Para x ∈ A \ {a}, tomando
y = f(x) ∈ B, tenemos

(g ◦ f)(x)− (g ◦ f)(a)
x− a

= g(y)− g(b)
x− a

= Φ(y) y − b
x− a

= (Φ ◦ f)(x) f(x)− f(a)
x− a

.

Como f es derivable en a, es continua en a; y como Φ es continua en b = f(a), la
composición Φ ◦ f es continua en a. Pasando al límite cuando x→ a,

ĺım
x→a

(g ◦ f)(x)− (g ◦ f)(a)
x− a

= (Φ ◦ f)(a)︸ ︷︷ ︸
=Φ(b)=g′(b)

ĺım
x→a

f(x)− f(a)
x− a︸ ︷︷ ︸

= f ′(a)

= g′(b) f ′(a),

como queríamos. ■
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Una sutileza: Exigir b = f(a) ∈ B′ es necesario para hablar de la derivada de g en b.
Sin embargo, aún si b fuese un punto aislado de B, tiene sentido considerar (g ◦ f)′(a).

En tal caso, sabemos que existe ε > 0 tal que (b−ε, b+ε)∩B = {b}. Por la continuidad
de f en a, existe δ > 0 con |x− a| < δ ⇒ |f(x)− b| < ε, y por tanto f(x) = b cerca de
a. Así, g ◦ f es constante en torno a a. El carácter local de la derivabilidad nos dice
que entonces g ◦ f es derivable en a con

(g ◦ f)′(a) = 0,

sin necesidad de hipótesis adicionales sobre g. En esencia, estamos derivando una
función constante.

Proposición 5.11 (Derivabilidad de la función inversa). Sea f : A→ R una función inyectiva,
sea B = f(A) y consideremos la función inversa f−1 : B → R. Supongamos que f es derivable
en un punto a ∈ A ∩A′ y sea b = f(a). Entonces b ∈ B′ y son equivalentes:

(i) f ′(a) ̸= 0 y f−1 es continua en b.

(ii) f−1 es derivable en b.

En tal caso,
(f−1)′(b) = 1

f ′(a) = 1
f ′(f−1(b)) .

Demostración

En primer lugar, probamos que b ∈ B′. Como a ∈ A′ existe una sucesión {xn} ⊂ A\{a}
con {xn} → a. Por la continuidad de f en a (derivabilidad ⇒ continuidad) se tiene
{f(xn)} → b y, por inyectividad de f , f(xn) ̸= b. Así, hay una sucesión de puntos de
B distintos de b, que converge a b; por tanto b ∈ B′.

(i) ⇒ (ii) Sea {bn} ⊂ B \ {b} con {bn} → b. Queremos demostrar que se cumple

f−1(bn)− f−1(b)
bn − b

−→ 1
f ′(a) .

Definimos an = f−1(bn) ∈ A \ {a}. La continuidad de f−1 en b da {an} → f−1(b) = a.
Como f(an) = bn y f(a) = b, obtenemos

f−1(bn)− f−1(b)
bn − b

= an − a
f(an)− f(a) .

Usando la derivabilidad de f en a y que f ′(a) ̸= 0, tenemos
f(an)− f(a)

an − a
−→ f ′(a) =⇒ an − a

f(an)− f(a) −→
1

f ′(a) .

(ii) ⇒ (i). Si f−1 es derivable en b, entonces es continua en b.

Para ver que f ′(a) ̸= 0, aplicamos la regla de la cadena a f−1 ◦ f = idA en a:

1 = (idA)′(a) = (f−1 ◦ f)′(a) = (f−1)′(b) f ′(a).

Luego f ′(a) ̸= 0 y, además, (f−1)′(b) = 1/f ′(a). ■
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Ejemplo

Dado q ∈ N \ {1}, la función gq(x) = q
√
x es derivable en Dom(gq) \ {0} con

g′
q(x) =

q
√
x

q x
.

Resolución. Como es natural, el dominio de definición de gq depende de la paridad de
q, que determina a su vez el dominio de fq(x) = xq del cual gq es inversa. Para agrupar
ambos casos, ponemos

Aq =
{
R, si q es impar,
[0,+∞), si q es par.

En ambos casos Aq es un intervalo y la función fq : Aq → R es estrictamente creciente,
luego f−1 existe y es continua en fq(Aa) = Aq.

Además, fq es derivable en Aq con f ′
q(x) = qxq−1. Por tanto, f ′

q(x) ̸= 0 cuando x ≠ 0,
esto es, en Aq \ {0}.

Se tiene fq(Aq \ {0}) = Aq \ {0}. Tomemos pues y ∈ Aq \ {0}. Usando la regla de
derivación de la función inversa:

(gq)′(y) = (f−1)′(y) = 1
f ′(f−1(y)) = 1

q f−1(y) q−1 = 1
q ( q
√
y) q−1 =

q
√
y

q y
.

5.3 Teorema del Valor Medio
Las siguientes definiciones son tan intuitivas que no precisan motivación alguna:

Definición 5.12. Sea f : A→ R.

Diremos que f tiene un máximo absoluto en a ∈ A f(a) es el máximo del conjunto f(A),
esto es, si f(a) ≥ f(x) para todo x ∈ A.

Diremos que f tiene un mínimo absoluto en a ∈ A si f(a) es el mínimo del conjunto f(A),
esto es, f(a) ≤ f(x) para todo x ∈ A.

Diremos que f tiene un extremo absoluto en a si f tiene en a un máximo absoluto o un
mínimo absoluto.

Definición 5.13. Para A ⊂ R, un punto a ∈ A es interior a A si existe r > 0 tal que
(a− r, a+ r) ⊂ A. Denotamos por A◦ al conjunto de puntos interiores de A, también llamado
el interior de A.

Definición 5.14. Sea f : A→ R.

Diremos que f tiene un máximo relativo en a ∈ A si existe δ > 0 tal que (a− δ, a+ δ) ⊂ A
y f(a) ≥ f(x) para todo x ∈ (a− δ, a+ δ).

f tiene un mínimo relativo en a si f(a) ≤ f(x) para todo x en dicho intervalo.

Un extremo relativo es un máximo relativo o un mínimo relativo.

En vista de la definición anterior, solo hablamos de extremos relativos en puntos interiores de
A. Para ilustrar la diferencia entre extremos absolutos y relativos, consideramos el siguiente
ejemplo:
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f(x) =


x, 0 ≤ x ≤ 1,
2− x, 1 < x ≤ 2,
2x− 4, 2 < x ≤ 3.

x

y

1 2 3

1

2

En vista de la gráfica, no es difícil intuir que f tiene

En x = 0, un mínimo absoluto que no es relativo.

En x = 1, un máximo relativo que no es absoluto.

En x = 2, un mínimo absoluto y relativo.

En x = 3, un máximo absoluto que no es relativo.

Intuitivamente, vemos claro que si f tiene un extremo relativo en un punto en el que puede
definirse la recta tangente a su gráfica, esta será horizontal. Esta idea nos lleva a la siguiente
condición necesaria para que una función derivable tenga un extremo relativo.

Proposición 5.15. Si f : A → R tiene un extremo relativo en a ∈ A y f es derivable en a,
entonces f ′(a) = 0.

Demostración

Supongamos que f tiene un máximo relativo en a. Entonces existe δ > 0 tal que
(a− δ, a+ δ) ⊂ A y f(a) ≥ f(x) para todo x de ese intervalo. De aquí,

a− δ < x < a ⇒ f(x)− f(a)
x− a

≥ 0, a < x < a+ δ ⇒ f(x)− f(a)
x− a

≤ 0.

De la primera inecuación deducimos que f ′(a−) ≥ 0 y de la segunda que f ′(a+) ≤ 0.
Si f es derivable en a, f ′(a+) = f ′(a−) = f ′(a), lo que implica que f ′(a) = 0.

Si f tiene en a un mínimo relativo, aplicamos lo anterior a −f , que tiene un máximo
relativo en a. Entonces 0 = (−f)′(a) = −f ′(a), es decir, f ′(a) = 0. ■

Ejercicio: Dar un ejemplo de una función no constante que tenga un máximo relativo
en todos sus puntos.

Aunque el resultado anterior solo permite encontrar extremos relativos, puede usarse para
obtener una regla práctica para optimizar una función, es decir, encontrar su máximo y mínimo
absoluto, si es que los tiene. Basta pensar en qué condiciones debe cumplir un punto de extremo
absoluto para no ser detectado por la proposición anterior.

Regla práctica: Si f : A → R tiene un extremo absoluto en a ∈ A, entonces
necesariamente a está en una de las siguientes situaciones:
(1) a /∈ A◦;
(2) a ∈ A◦ y f no es derivable en a;
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(3) a ∈ A◦ y f ′(a) = 0.

En la práctica, el conjunto de puntos que cumplen una de las tres condiciones anteriores suele
ser finito, lo que nos permite encontrar los extremos absolutos de f simplemente comparando
las imágenes de dichos puntos.

Ejemplo

Problema. Calcular los extremos absolutos y relativos de f(x) = x2 − 2 |x| en el
intervalo [−2, 2].
Resolución. Como f es una función continua, f([−2, 2]) es un intervalo cerrado y
acotado por el teorema de Weierstrass. Por lo tanto f alcanza su máximo y su mínimo
en [−2, 2].

Para encontrar los extremos absolutos, construimos nuestro conjunto de candidatos
usando la regla anterior:

1 Puntos no interiores: x = −2 y x = 2.

2 Puntos interiores donde f no es derivable.

Para x ̸= 0, f es derivable porque x2 y |x| lo son. En x = 0 vemos fácilmente que
f ′(0+) = 1 y f ′(0−) = −1, por lo que f no es derivable en 0. Añadimos este punto a
nuestro conjunto de sospechosos.

3 Puntos interiores que cumplan f ′(x) = 0.

Para x ̸= 0, tenemos que

f ′(x) = 0 ⇐⇒ 2x− 2 |x|
x

= 0 ⇐⇒ x2 = |x| .

Si x > 0, la ecuación anterior es equivalente a x2 = x, que tiene como única solución
x = 1. En cambio, si x < 0, se tiene x2 = −x y por tanto x = −1.

Candidatos a extremos absolutos: {−2,−1, 0, 1, 2}. Comparamos las imágenes, teniendo
en cuenta que f es una función par (f(x) = f(−x)):

f(−2) = f(2) = 0, f(−1) = f(1) = −1, f(0) = 0.

Por tanto, f tiene mínimos absolutos y relativos en 1 y −1, un máximo absoluto y
relativo en 0 y máximos absolutos en −2 y 2.

x

y

-2 -1 1 2

-1

Con el objetivo de abreviar los enunciados que aparecerán a partir de ahora, introducimos una
notación que recoja las distintas hipótesis de continuidad y derivabilidad que usaremos.

Sea A ⊂ R y f : A → R. Denotamos por C(A) al subconjunto de F(A) de las funciones
continuas en A, y D(A) al subconjunto de este formado por las funciones derivables en A,
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teniéndose
D(A) ⊂ C(A) ⊂ F(A).

Cuando A◦ ̸= ∅, una hipótesis que aparecerá a menudo será que f sea derivable en A◦. Abusando
de la notación, esto lo escribiremos como f ∈ D(A◦), entendiendo que f |A◦ es una función
derivable en A◦. Por tanto, si pedimos que una función f : A→ R sea continua en todo A pero
derivable solo en los puntos de A◦, escribiremos simplemente f ∈ C(A) ∩D(A◦).

Uno podría preguntarse por la posibilidad de trabajar con la hipótesis más cómoda f ∈ D[a, b],
pero entonces estaríamos descartando funciones tan elementales como x 7→

√
1− x2 para

x ∈ [−1, 1], que no son derivables en los extremos de los intervalos donde están definidas y aún
así satisfacen todas las propiedades que listaremos a continuación.

Comenzamos sacando partido a la condición f ′(a) = 0 que se tiene en los extremos relativos a
donde f es derivable, poniéndonos en una situación en la que podamos garantizar la existencia
de estos.

Teorema 5.16 (Teorema de Rolle). Sean a, b ∈ R con a < b y f ∈ C[a, b] ∩D(a, b) tales que
f(a) = f(b). Entonces existe c ∈ (a, b) tal que f ′(c) = 0.

Demostración

Por ser f continua en [a, b], el teorema de Weierstrass garantiza que f([a, b]) tiene
mínimo y máximo, esto es, existen m,M ∈ [a, b] con f(m) = mı́n f([a, b]) y f(M) =
máx f([a, b]).

Si m ∈ (a, b), entonces serán además un mínimo relativo, y por tanto f ′(m) = 0,
proporcionándonos el c que buscábamos, y lo mismo ocurre si M ∈ (a, b).

Si esto no ocurre, es porque m y M son los extremos del intervalo [a, b]. Pero entonces,
dado que f(a) = f(b), se tiene que mı́n f([a, b]) = máx f([a, b]), luego f es constante
en [a, b]. Por tanto f ′(x) = 0 en todo (a, b). ■

A continuación enunciamos y demostramos uno de los teoremas más importantes del cálculo
diferencial.

Teorema 5.17 (Teorema del valor medio). Sean a, b ∈ R con a < b y f ∈ C[a, b] ∩ D(a, b).
Entonces existe c ∈ (a, b) tal que

f(b)− f(a) = f ′(c) (b− a).

x

y

a b

(a, f(a)) (b, f(b))r
(c, f(c))

Demostración

La intuición geométrica de esta demostración es clara: entre los puntos (a, f(a)) y
(b, f(b)) existe un (c, f(c)) de forma que la recta tangente a Gr f en (c, f(c)) es paralela
a la recta secante que une (a, f(a)) con (b, f(b)). Esto además nos da una pista de
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cómo demostrar el resultado: restando a f dicha recta secante

r(x) = f(a) + f(b)− f(a)
b− a

(x− a),

y aplicando el teorema de Rolle a la función resultante.

Consideramos pues la función g : [a, b]→ R definida por

g(x) = f(x)− r(x) (x ∈ [a, b]).

Claramente g ∈ C[a, b] ∩D(a, b) y

g′(x) = f ′(x)− f(b)− f(a)
b− a

, x ∈ (a, b).

Además, g(a) = g(b) = 0, lo que nos permite aplicar el teorema de Rolle para obtener
un c ∈ (a, b) con g′(c) = 0. Por tanto f(b)− f(a) = (b− a) f ′(c), como queríamos. ■

Nota: Al igual que sucedía con el teorema de Bolzano y el del valor intermedio, el
teorema del valor medio implica a Rolle como caso particular tomando f(b) = f(a) y,
a su vez, el teorema de Rolle permite demostrar el teorema del valor medio.

Ejercicio: Sea f ∈ D[0, 1] verificando que f(0) = 0 y |f ′(x)| ≤ |f(x)| para todo
x ∈ [0, 1]. Probar que f(x) = 0 para todo x ∈ [0, 1].

Pasamos a comentar algunas consecuencias importantes del teorema del valor medio. Empezamos
estudiando cómo el signo de f ′ determina la monotonía de f , lo que a su vez nos permite
detectar extremos relativos.

Proposición 5.18. (De la derivabilidad a la monotonía) Sea I un intervalo no trivial y
f ∈ C(I) ∩D(I◦). Entonces

f es creciente en I ⇐⇒ f ′(x) ≥ 0 ∀x ∈ I◦,

f es decreciente en I ⇐⇒ f ′(x) ≤ 0 ∀x ∈ I◦.

Demostración

Demostramos solo el caso en que f es creciente, pues el segundo se puede obtener
aplicando el anterior a −f .

⇒ Sea x ∈ I◦.

Si h > 0, como f es creciente, f(x+h)−f(x)
h ≥ 0.

Si h < 0, entonces f(x+ h) ≤ f(x) y, al dividir por h < 0, f(x+h)−f(x)
h ≥ 0.

Tomando h→ 0, se obtiene f ′(x) ≥ 0.
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⇐ Tomemos y < z en I. Por el TVM aplicado en [y, z],

f(z)− f(y) = f ′(c) (z − y) para algún c ∈ (y, z) ⊂ I◦.

Como f ′(c) ≥ 0 y z − y > 0, se sigue f(z) ≥ f(y). ■

Proposición 5.19. De la derivabilidad a la monotonía estricta] Sea I un intervalo no trivial y
f ∈ C(I) ∩D(I◦). Si f ′(x) ̸= 0 para todo x ∈ I◦, entonces f es estrictamente monótona en I.

En tal caso, si f es estrictamente creciente, entonces f ′(x) > 0 para todo x ∈ I◦, y f ′(x) < 0 en
I◦ si f es estrictamente decreciente.

Demostración

Veamos que si f ′(x) ̸= 0 en I◦, entonces f es inyectiva, lo que sumado a la continuidad
de f nos dará la monotonía estricta.

Tomamos x ̸= y en I. Por el teorema del valor medio existe c ∈ (x, y) ⊂ I◦ con

f(y)− f(x) = f ′(c) (y − x).

Si f(y) = f(x), se tendría f ′(c) = 0, contradicción. Luego f es inyectiva en I.

Si f es estrictamente creciente, por la Proposición 5.18 se tiene f ′(x) ≥ 0 en I◦; como
nunca se anula, en realidad f ′(x) > 0 en I◦. Análogamente, si f es estrictamente
decreciente, entonces f ′(x) < 0 en I◦. ■

Nota: Obsérvese que al hablar de monotonía estricta perdemos la afirmación recíproca;
que una función f sea derivable en un intervalo y estrictamente monótona no implica
que f ′ no se anule en dicho intervalo.

Encontramos un contraejemplo sencillo en la función f(x) = x3 definida para todo
x ∈ R, que es estrictamente creciente en R pero f ′(0) = 0.

⋆ Ejercicio: Sea I un intervalo no trivial, a ∈ I◦ y f ∈ C(I) ∩D(I◦ \ {a}) tal que
f ′(x) > 0 para todo x ∈ I◦ \ {a}. Probar que I es estrictamente creciente en I.

Importante: Nótese que este resultado es falso en general si prescindimos de la
hipótesis de que f es continua en a. No es difícil dar un contraejemplo: f(x) = − 1

x
para x ̸= 0 y f(0) = 0.
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x

y

Tenemos f ′(x) = 1
x2 > 0 para todo x ≠ 0, lo que nos dice que f es estrictamente

creciente en (−∞, 0) y en (0,+∞), pero no podemos concluir que f sea estrictamente
creciente en R.

Si f ′ es idénticamente nula, entonces f es a la vez creciente y decreciente en I, lo que implica
que es constante por el teorema del valor intermedio. Por supuesto, el recíproco es trivialmente
cierto.

Proposición 5.20. Sea I un intervalo no trivial y f ∈ C(I) ∩D(I◦). Entonces f es constante
si, y solo si, f ′(x) = 0. ■

Nota: Este corolario resalta la importancia de que las funciones con las que trabajamos
estén definidas en un intervalo de R. Por ejemplo, la función sgn : R∗ → R verifica
sgn′(x) = 0 para todo x ∈ R∗, pero f no es constante en R∗ (aunque, a poco que se
piense, sí lo será en cada intervalo contenido en R∗). Otro contraejemplo importante es
la función parte entera.

Proposición 5.21. Sea J = (a− δ, a+ δ) con a ∈ R, δ > 0, y sea f : J → R continua en J y
derivable en J \ {a}. Si

f ′(x) ≥ 0 ∀x ∈ (a− δ, a) y f ′(x) ≤ 0 ∀x ∈ (a, a+ δ),

entonces f tiene un máximo absoluto en a. (Con las desigualdades invertidas se obtiene un
mínimo absoluto en a.)

Demostración

Por la Proposición 5.18, f es creciente en (a − δ, a) y decreciente en (a, a + δ). Por
tanto

f(x) ≤ f(a) para todo x ∈ (a− δ, a) porque f es creciente, y
f(x) ≤ f(a) para todo x ∈ (a, a+ δ), por ser decreciente.

Por tanto, f(x) ≤ f(a) para todo x ∈ J , lo que nos permite concluir que f(a) es el
máximo de f en J . ■
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Ejemplo

Problema. Estudiar los extremos relativos de f(x) = x

1 + x2 en R.

Resolución. Como f ∈ D(R), y R◦ = R, los extremos relativos satisfacen todos la
ecuación f ′(x) = 0. Usando las reglas de derivación, vemos inmediatamente que:

f ′(x) = 1− x2

(1 + x2)2 .

De f ′(x) = 0 se obtiene x = ±1 como únicos puntos críticos. Además, se tiene f ′(x) ≥ 0
para x ∈ [−1, 1] y f ′(x) ≤ 0 cuando |x| ≥ 1. Usando la Proposición 5.21 en a = −1 y
a = 1 con δ = 2 concluimos que f tiene un mínimo relativo en x = −1 y un máximo
relativo en x = 1.

x

y

-1 1
mín. rel.

máx. rel.

Ejemplo

Problema. Calcular el número de soluciones de la ecuación x = arctan x para x ∈ R.
Resolución. Sea g : R→ R dada por g(x) = x− arctan x. Claramente, el número de
soluciones de la ecuación anterior coincide con el número de valores x satisfaciendo
g(x) = 0.

En primer lugar, probaremos que g es inyectiva, lo que nos permitirá concluir que,
como mucho g tiene un cero. Comprobar esta propiedad mediante la definición es una
ardua tarea, pero podemos aprovechar que g es derivable para obtener la inyectividad
como consecuencia de su monotonía estricta.

Sabemos que g es derivable por ser suma de funciones derivables, y se tiene

g′(x) = 1− 1
1 + x2 = x2

1 + x2 ≥ 0 ∀x ∈ R, g′(x) = 0 ⇐⇒ x = 0.

De g′(x) > 0 en (−∞, 0) y en (0,+∞), concluimos que g es estrictamente creciente
en R− y en R+. Como g es continua en 0, podemos concluir que g es estrictamente
creciente en todo R (véase el ejercicio ⋆).

En efecto:

Sean x, y ∈ R con x < y. Nuestro objetivo es probar que f(x) < f(y). Por supuesto,
esto ya lo sabemos si 0 ≤ x < y o x < y < 0, por lo que solo debemos discutir el caso
x < 0 < y.

Aplicando el TVM en [x, 0] y [0, y], existen c1 ∈ (x, 0) y c2 ∈ (0, y) tales que

g(0)− g(x) = g′(c1)(0− x) > 0, g(y)− g(0) = g′(c2)(y − 0) > 0.

Sumando, g(y)− g(x) > 0. Por tanto g es estrictamente creciente en R y la ecuación
g(x) = 0 tiene a lo sumo una solución.
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Finalmente, observamos que g(0) = 0− arctan 0 = 0, luego x = 0 es la única solución.

Alternativamente, como

−π
2 < arctan x < π

2 ∀x ∈ R,

se tiene g(π2 ) > 0 y g(−π
2 ) < 0, y por el teorema de Bolzano hay un cero en (−π

2 ,
π
2 ),

que por inyectividad de g debe ser único.

Ejercicio: Demostrar que existe una única función f : R→ R tal que

2f(x)3 − 3f(x)2 + 6f(x) = x ∀x ∈ R.

Probar que f es derivable en R y calcular f ′(0).

Como última consecuencia del teorema del valor medio, veamos que las funciones derivadas
cumplen la propiedad del valor intermedio, esto es, transforman intervalos en intervalos. Además,
obtendremos una importante regla de cálculo de derivadas en un punto a través de límites de la
función derivada.

Aunque estas propiedades nos recuerden a las de las funciones continuas, nótese que en ningún
momento asumiremos que f ′ es continua.

Teorema 5.22 (Teorema de Darboux). Sea I un intervalo no trivial y sea f : I → R una
función derivable en I. Entonces el conjunto f ′(I) = { f ′(x) : x ∈ I } es un intervalo. Por tanto,
f ′ tiene la propiedad del valor intermedio.

Demostración

Razonando por reducción al absurdo, supongamos que existen a, b ∈ I, y λ ∈ R tales
que f ′(a) < λ < f ′(b) pero λ /∈ f ′(I).

Construimos la función g : I → R definida por g(x) = f(x)− λx para todo x ∈ I. Esta
función es derivable en I con g′(x) = f ′(x)− λ ̸= 0 para todo x ∈ I.

Por tanto, g es estrictamente monótona, y ocurrirá entonces que, o bien g′(x) > 0 para
todo x ∈ I si g es creciente, o bien g′(x) < 0 para todo x ∈ I si g es decreciente.

En ambos casos tenemos una contradicción, ya que g′(a) = f ′(a) − λ < 0, mientras
que g′(b) = f ′(b)− λ > 0.

Para ver que f ′ tiene la propiedad del valor intermedio, tomamos un intervalo J ⊂ I y
aplicamos este resultado a f ′|J . ■

Cuando una función f definida en un intervalo I puede escribirse como g′ para alguna otra
función g ∈ D(I), decimos que g es una primitiva de f , y por tanto que f admite una primitiva
en I.

En estos términos, el teorema de Darboux puede leerse como sigue: si f : I → R admite una
primitiva, entonces f tiene la propiedad del valor intermedio.
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Esta lectura nos permite concluir inmediatamente que funciones como la parte entera no admiten
una primitiva en R, puesto que no verifican la propiedad del valor intermedio.

Proposición 5.23. Sea I un intervalo no trivial y f : I → R una función continua. Dado a ∈ I,
supongamos que f es derivable en I \ {a}.

(i) Si f ′ tiene límite en a, entonces f es derivable en a con f ′(a) = ĺımx→a f
′(x).

(ii) Si f ′ diverge a ±∞ en a, entonces f no es derivable en a.

(iii) Supongamos que a ∈ I◦.

Si f ′ tiene límite por la izquierda en a, entonces f es derivable por la izquierda en a
con f ′(a−) = ĺımx→a− f ′(x).

Si f ′ tiene límite por la derecha en a, entonces f ′(a+) = ĺımx→a+ f ′(x).

Por tanto, si f ′ tiene límite por la izquierda y por la derecha en a, pero dichos límites no
son iguales, entonces f no es derivable en a.

Finalmente, si f es derivable en I, entonces f ′ no tiene discontinuidades evitables ni de salto en
ningún punto de I.

Demostración

Sea {xn} ⊂ I \ {a} con {xn} → a. Para cada n, definimos

In =
{

[xn, a] si xn < a,

[a, xn] si xn > a.

Entonces In ⊂ I y I◦
n ⊂ I \ {a}, luego f es continua en In y derivable en I◦

n.

Para cada n ∈ N, por el teorema del valor medio existe cn ∈ I◦
n tal que

f(xn)− f(a)
xn − a

= f ′(cn), mı́n{a, xn} < cn < máx{a, xn}, cn → a.

(i) Si L = ĺımx→a f
′(x), entonces f ′(cn)→ L y la identidad anterior da la derivabili-

dad de f en a con f ′(a) = L.

(ii) Si {f ′(cn)} diverge, de la misma identidad se deduce que f no es derivable en a.

(iii) Si a ∈ J◦ y existe L− = ĺımx→a− f ′(x), tomando xn ↑ a obtenemos cn ↑ a y
f ′(cn)→ L−, luego existe f ′(a−) = L−. De forma análoga para la derecha. Si los
límites laterales existen pero no coinciden, las derivadas laterales de f en a no
coinciden y f no es derivable en a.

Por último, si f es derivable en I, f ′ no puede tener discontinuidades evitables (contra-
dirían (i)) ni de salto (contradirían (iii)). ■

Ejercicio. Sea f una función derivable en (0,+∞). Probar que si f y f ′ tienen límite
en +∞, entonces ĺımx→+∞ f ′(x) = 0. ¿Es cierto el recíproco? ¿Es cierto el resultado si
prescindimos de la hipótesis de que f ′ tenga límite en +∞?
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5.4 Funciones convexas
La noción de función convexa es muy fácil de comprender geométricamente: si I es un intervalo
no trivial, una función f : I → R será convexa cuando, dados dos puntos cualesquiera a < b en
I, la gráfica de f |[a,b] queda siempre por debajo del segmento que une (a, f(a)) y (b, f(b)).

x

y

Sabemos que para a < b en I, la recta secante a la gráfica de f que pasa por (a, f(a)) y (b, f(b))
tiene ecuación

r(x) = f(a) + f(b)− f(a)
b− a

(x− a)

Por tanto f será convexa cuando, para cualesquiera a, b ∈ I con a < b, se tenga que

f(x) ≤ f(a) + f(b)− f(a)
b− a

(x− a) ∀x ∈ [a, b]

o equivalentemente,

f(x) ≤ b− x
b− a

f(a) + x− a
b− a

f(b) ∀x ∈ [a, b] (5.1)

Nótese que los coeficientes que acompañan a f(a) y f(b) en la fórmula anterior se encuentran
en [0, 1], y además su suma es constantemente igual a 1. Esto nos motiva a escribir

x− a
b− a

= t ∈ [0, 1], b− x
b− a

= 1− t ∈ [0, 1].

por lo que queda x = (1− t)a+ tb ∈ [a, b] y (5.1) nos dice que

f
(
(1− t)a+ tb

)
≤ (1− t)f(a) + tf(b) ∀t ∈ [0, 1]

Hemos llegado así a la definición cómoda de función convexa que buscábamos.

Definición 5.24. Si I es un intervalo no trivial, se dice que una función f : I → R es convexa
cuando verifica:

f
(
(1− t)x+ ty

)
≤ (1− t)f(x) + tf(y) ∀x, y ∈ I, ∀t ∈ [0, 1]

Por otro lado, decimos que f es cóncava cuando −f es convexa, es decir, cuando se tiene la
desigualdad opuesta (≥).

Nótese que en realidad es suficiente con comprobar la definición para t ∈ (0, 1), pues la
desigualdad anterior es trivialmente cierta para t = 0 y t = 1. De hecho, se da la igualdad en
esos puntos.

Como ejemplo, la función valor absoluto es convexa, pues evidentemente, por la desigualdad
triangular ∣∣(1− t)x+ ty

∣∣ ≤ (1− t) |x|+ t |y| ∀x, y ∈ R, ∀t ∈ [0, 1].
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En general, no es sencillo verificar la definición de convexidad, ni siquiera para funciones muy
elementales. Lo habitual es usar alguna de las caracterizaciones que vamos a ver a continuación,
y reservar la definición para obtener desigualdades nada triviales para funciones que ya sabemos
que son convexas.

Lema 5.25 (de las tres secantes). Sea I un intervalo no trivial y f : I → R una función convexa.
Entonces, para cualesquiera x1, x2, x3 ∈ I, con x1 < x2 < x3, se tiene:

f(x2)− f(x1)
x2 − x1

≤ f(x3)− f(x1)
x3 − x1

≤ f(x3)− f(x2)
x3 − x2

.

x

y

x1 x2 x3

m12

m13
m23

m12 ≤ m13 ≤ m23

Demostración

Esta demostración no se vio en clase.

Empezamos aplicando la definición de convexidad con con a = x1, x = x2 y b = x3
para obtener

f(x2) ≤ x3 − x2
x3 − x1

f(x1) + x2 − x1
x3 − x1

f(x3).

Ahora restamos f(x1) en ambos miembros:

f(x2)− f(x1) ≤ x1 − x2
x3 − x1

f(x1) + x2 − x1
x3 − x1

f(x3) = (x2 − x1) f(x3)− f(x1)
x3 − x1

,

y al dividir por x2 − x1 > 0 tenemos la primera desigualdad:

f(x2)− f(x1)
x2 − x1

≤ f(x3)− f(x1)
x3 − x1 .

Para la segunda, cambiamos de signo ambos miembros de (5.4), con lo que la desigualdad
se invierte, y sumamos en ambos f(x3), obteniendo

f(x3)− f(x2) ≥ x2 − x3
x3 − x1

f(x1) + x3 − x2
x3 − x1

f(x3) = (x3 − x2) f(x3)− f(x1)
x3 − x1

,

con lo que basta dividir por x3 − x2 > 0. ■

Proposición 5.26. Sea I un intervalo no trivial y f : I → R una función convexa. Entonces,
para cada a ∈ I la función fa : I \ {a} → R, dada por

fa(x) = f(x)− f(a)
x− a

para todo x ∈ I \ {a},

es creciente.
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Demostración

Sean a ∈ I y x, y ∈ I \ {a} con x < y. Para probar que fa(x) ≤ fa(y), distinguimos los
tres casos posibles, según cómo estén ordenados los puntos.

Si a < x < y, usamos la primera desigualdad del lema de las tres tangentes con
x1 = a, x2 = x, x3 = y, obteniendo directamente que fa(x) ≤ fa(y).

Si x < y < a, usamos la segunda desigualdad con x1 = x, x2 = y, x3 = a,
obteniendo la misma conclusión.

Finalmente, si x < a < y, usamos la desigualdad entre el primer y último miembro
con x1 = x, x2 = a, x3 = y, obteniendo de nuevo fa(x) ≤ fa(y).

■

Teorema 5.27. Sea I un intervalo no trivial y f : I → R una función convexa. Entonces f es
derivable por la izquierda y por la derecha, y por tanto es continua, en todo punto a ∈ I◦. De
hecho, se tiene

f ′(a−) = sup{ fa(x) : x ∈ I, x < a }, f ′(a+) = ı́nf{ fa(x) : x ∈ I, x > a }.

Demostración

La demostración solo necesita del hecho que fa es una función creciente.

Como a ∈ I◦, podemos tomar b ∈ I con b > a. Como fa es una función creciente, se
tiene entonces fa(x) ≤ fa(b) para todo x < a.

Por tanto, el conjunto A = {fa(x) : x ∈ I, x < a} está mayorado y podemos considerar

sa = supA.

Nuestra intención ahora es probar que sa = f ′(a−), es decir, que

ĺım
x→a−

fa(x) = sa.

Tomamos para ello ε > 0 y usamos la definición de supremo, que nos garantiza que existe
x0 ∈ A (esto es, x0 ∈ I con x0 < a) tal que fa(x0) > sa − ε. Tomando δ = a− x0 > 0,
para x ∈ (a− δ, a) se tiene

sa − ε < fa(x0) ≤ fa(x) ≤ sa < sa + ε,

como se quería. El cálculo de la derivada por la derecha es análogo. ■

Como ya se comentó, la existencia de derivadas laterales en todo punto de I◦ no nos asegura
que una función convexa sea derivable en I◦, ya que estas podrían no coincidir. Por ejemplo, la
función valor absoluto es convexa pero no es derivable en 0.

Tampoco podemos asegurar que una función convexa sea continua en los extremos de un
intervalo, si los hay. Por ejemplo, tomando f(x) = 0 para todo x ∈ (0, 1) y f(0) = f(1) = 1,
obtenemos una función convexa f : [0, 1]→ R que no es continua en 0 ni en 1.

Proposición 5.28. Sea I un intervalo no trivial y f ∈ D1(I). Las siguientes afirmaciones son
equivalentes:
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x

y

0 1

1
(0, 1) (1, 1)

(i) f es convexa.

(ii) f ′ es creciente.

(iii) Para cualesquiera a, x ∈ I se tiene que f(x) ≥ f(a) + f ′(a) (x− a).

Demostración

(i) ⇒ (ii) Dados a, b ∈ I con a < b, queremos probar que f ′(a) ≤ f ′(b). Para ello
basta tomar x ∈ (a, b) y usar la proposición anterior.

f ′(a) = f ′(a+)
(2)
≤ fa(x) (3)= fx(a)

(1)
≤ fx(b) (3)= fb(x)

(2)
≤ f ′(b−) = f ′(b),

donde hemos usado que fx es una función creciente en (1), las expresiones

f ′(b−) = sup{ fb(x) : x ∈ I, x < a }, f ′(a+) = ı́nf{ fa(x) : x ∈ I, x > a },

en (2) y, en (3), la observación elemental de que

fy(x) = f(y)− f(x)
y − x

= f(x)− f(y)
x− y

= fx(y).

(ii) ⇒ (iii) Para a, x ∈ I con a ≠ x, el teorema del valor medio nos da un c

estrictamente entre a y x de forma que

f(x) = f(a) + f ′(c) (x− a).

Por tanto, bastará ver que f ′(c) (x− a) ≥ f ′(a) (x− a).
Si a < c < x, al ser f ′ creciente, tendremos f ′(c) ≥ f ′(a), y basta multiplicar
ambos miembros por x− a > 0.
Si x < c < a, entonces f ′(c) ≤ f ′(a), pero esta desigualdad se invierte al
multiplicar ambos miembros por x− a < 0.

(iii) ⇒ (i) Sean x, y ∈ I y t ∈ [0, 1]. En este caso, tenemos que probar que

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y).

Para ello, tomamos a = (1− t)x+ ty ∈ I y aplicamos dos veces (iii), obteniendo:

(1− t)f(x) + tf(y) ≥ (1− t)
(
f(a) + f ′(a)(x− a)

)
+ t
(
f(a) + f ′(a)(y − a)

)
= f(a) + f ′(a)

(
(1− t)(x− a) + t(y − a)

)
y basta observar que

(1− t)(x− a) + t(y − a) =
(
(1− t)x+ ty

)
− (1− t)a− ta = a− (1− t)a− ta = 0.

■
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Recordamos que, para una función derivable en un intervalo, el signo de su derivada caracteriza
su monotonía. Por tanto, si f ′ es derivable, tenemos:

Proposición 5.29. Sea I un intervalo no trivial y f ∈ D(I) tal que f ′ ∈ D(I◦). Entonces f es
convexa si, y sólo si, f ′′(x) ≥ 0 para todo x ∈ I◦. ■

5.5 Las reglas de L’Hôpital
En esta sección estudiaremos un método práctico para resolver indeterminaciones de los tipos
[0/0] o [∞/∞], conocido como la regla (o reglas) de L’Hôpital.

La llamada regla de L’Hôpital es un buen ejemplo de la famosa ley de Stigler de la eponimia,
que dice, en esencia, que ningún descubrimiento científico lleva el nombre de su descubridor
original. De forma irónica, la propia ley lleva el nombre del estadístico S. Stigler, pero suele
atribuirse al sociólogo estadounidense R. K. Merton.

Guillaume François Antoine, marqués de L’Hôpital, fue un aristócrata y matemático francés,
conocido por ser el autor del primer manual de cálculo diferencial, Analyse des infiniment petits
pour l’intelligence des lignes courbes, publicado en 1696. En esta obra aparece una regla para
calcular ciertos límites asociados a formas indeterminadas como [0/0], que hoy conocemos como
regla de L’Hôpital, pero cuyo descubrimiento se debe casi con toda seguridad a quien fue su
maestro, Johann Bernoulli.

L’Hôpital se convirtió en alumno de Bernoulli en París, donde este último había sido invitado a
impartir un curso de cálculo. Bernoulli era un matemático brillante pero con pocos recursos
económicos y sin una posición estable, y fruto de su relación con L’Hôpital, en 1694 firmaron
un acuerdo por el cual L’Hôpital le pagaba un salario anual de 300 francos a cambio de recibir
por carta sus resultados más recientes y poder utilizarlos libremente en sus propios escritos.

La correspondencia conservada sugiere que muchos de los resultados del libro, incluida la regla de
cálculo de indeterminaciones mediante derivadas sucesivas, proceden efectivamente de Bernoulli,
mientras que el mérito de L’Hôpital reside sobre todo en haberlos organizado y difundido en
forma de tratado claro y sistemático.

Tras la muerte de L’Hôpital, Bernoulli empezó a reclamar con fuerza el mérito de muchos
resultados del libro, incluida la regla. En una carta de 1707 a Varignon llega a afirmar que
L’Hôpital «no tuvo otra parte en este libro que traducir al francés el material que yo le
proporcioné, en su mayor parte en latín». Durante siglos, esto alimentó la idea de que L’Hôpital
había sido poco más que un plagiario que se aprovechó de los descubrimientos de un matemático
en una posición inferior a la suya.

Cuando a principios del siglo XX se redescubre y publica el contrato original, los historiadores
matizan mucho este juicio: L’Hôpital no fue exactamente un ladrón de ideas, sino alguien que
pagó por tener derecho a usarlas y que, además, organizó, pulió y escribió un manual muy claro
y didáctico, algo que tampoco es trivial desde el punto de vista matemático e histórico. En
la introducción de su libro agradece de forma explícita la ayuda prestada por Bernoulli, y en
ningún momento afirma ser el descubridor de los resultados que presenta.

Comenzamos con un resultado que abre el camino a relacionar los cocientes f/g y f ′/g′, y que
puede entenderse como una versión generalizada del teorema de valor medio, descubierta por
Cauchy.
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Teorema 5.30 (Teorema del valor medio generalizado). Sean a, b ∈ R con a < b y f, g ∈
C[a, b] ∩D(a, b). Entonces, existe c ∈ (a, b) verificando que:

(f(b)− f(a)) g′(c) = (g(b)− g(a)) f ′(c)

Interpretación geométrica. Si representamos la curva paramétrica x 7→
(
g(x), f(x)

)
en el plano R2, los puntos P = (g(a), f(a)) y Q = (g(b), f(b)) definen una cuerda. El
teorema asegura que existe c ∈ (a, b) tal que la recta tangente a la curva en (g(c), f(c))
es paralela a la cuerda PQ; en efecto,

f ′(c)
g′(c) = f(b)− f(a)

g(b)− g(a) .

g

f

x 7→ (sin x, cosx)

P = (g(a), f(a))

Q = (g(b), f(b))cuerda PQ

(g(c), f(c))
tangente en c

Demostración

Consideramos la función h : [a, b]→ R dada por

h(x) =

∣∣∣∣∣∣∣
1 f(x) g(x)
1 f(a) g(a)
1 f(b) g(b)

∣∣∣∣∣∣∣ = (f(b)−f(a)) g(x) − (g(b)−g(a)) f(x) + f(a) g(b) − f(b) g(a)

Es claro que h ∈ C[a, b] ∩D(a, b) con

h′(x) = (f(b)− f(a)) g′(x) − (g(b)− g(a)) f ′(x) ∀x ∈ (a, b)

También se tiene h(a) = h(b) = 0, y podemos usar el teorema de Rolle para encontrar
un c ∈ (a, b) tal que h′(c) = 0, que es precisamente la igualdad buscada. ■

Observación. El teorema del valor medio de Cauchy es, efectivamente, una genera-
cilización del teorema del valor medio que ya hemos visto. Por un lado, es claro que
podemos recuperar el segundo a partir del primero sin más que tomar g(x) = x.

Además, la versión de Cauchy nos da más información: si aplicáramos el TVM por
separado a f y a g, obtendríamos puntos c, d ∈ (a, b) tales que

f(b)− f(a) = f ′(c) (b− a), g(b)− g(a) = g′(d) (b− a),
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y sólo concluiríamos

(f(b)− f(a)) g′(c) = (g(b)− g(a)) f ′(d),

lo cual no garantiza la conclusión del teorema generalizado porque, en general, no
podemos asegurar c = d.

Respetando su aparición histórica, presentamos primero la regla para trabajar con indetermina-
ciones del tipo [0/0].

Teorema 5.31. Sea I un intervalo no trivial, a ∈ I y f, g : I \ {a} → R funciones verificando:

(a) f y g son derivables en I \ {a}

(b) g′(x) ̸= 0 para todo x ∈ I \ {a}

(c) ĺım
x→a

f(x) = ĺım
x→a

g(x) = 0.

Entonces se tiene que g(x) ̸= 0 para todo x ∈ I \ {a}, con lo que las funciones f/g y f ′/g′ están
definidas en I \ {a}. Además, se verifica que:

(i) ĺım
x→a

f ′(x)
g′(x) = L ∈ R =⇒ ĺım

x→a

f(x)
g(x) = L.

(ii) f ′(x)
g′(x) → +∞ (x→ a) =⇒ f(x)

g(x) → +∞ (x→ a).

(iii) f ′(x)
g′(x) → −∞ (x→ a) =⇒ f(x)

g(x) → −∞ (x→ a).

Además, si I no está mayorado y tomamos a = +∞, entonces existe un M > 0 tal que g(x) ̸= 0
para todo x ∈ I con x > M , y las implicaciones (i)-(ii)-(iii) siguen siendo válidas. Lo mismo
ocurre si I no está minorado y tomamos a = −∞.

Demostración

Empezamos con una observación sencilla: la hipótesis (c) permite extender las funciones
f y g en a sin más que poner f(a) = g(a) = 0, obteniendo funciones continuas en
I. Abusando de la notación, seguiremos llamando f y g a dichas extensiones, ya que
demostrar el teorema para las extensiones es equivalente a hacerlo para las f y g
originales. Así pues, podemos suponer que f, g ∈ C(I) con f(a) = g(a) = 0.

Para x ∈ I \ {a} llamamos Jx al intervalo entre a y x, cualquiera que sea su orden, es
decir, Jx = [mı́n{a, x},máx{a, x}]. Por supuesto, f y g son continuas en Jx, ya que
Jx ⊂ I, y derivables en J◦

x , pues J◦
x ⊂ I \ {a}.

Para comprobar la primera afirmación del enunciado, esto es, que g(x) ̸= 0, aplicamos
a g el teorema del valor medio, obteniendo dx ∈ J◦

x tal que

g′(dx) (x− a) = g(x)− g(a) = g(x)

pero x ̸= a y sabemos que g′(dx) ̸= 0, luego g(x) ̸= 0.

Por otra parte, aplicamos a f y g el teorema del valor medio generalizado, obteniendo
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cx ∈ J◦
x tal que (

f(x)− f(a)
)
g′(cx) =

(
g(x)− g(a)

)
f ′(cx)

con lo cual tenemos

0 < |cx − a| < |x− a| y f(x)
g(x) = f ′(cx)

g′(cx) . (2)

Prueba de (i). Dado ε > 0, existe δ > 0 tal que

y ∈ I, 0 < |y − a| < δ =⇒
∣∣∣∣f ′(y)
g′(y) − L

∣∣∣∣ < ε. (3)

Para x ∈ I con 0 < |x− a| < δ, al aplicar (2) tendremos 0 < |cx − a| < δ, lo que nos
permite usar (3) con y = cx para concluir que∣∣∣∣f(x)

g(x) − L
∣∣∣∣ =

∣∣∣∣f ′(cx)
g′(cx) − L

∣∣∣∣ < ε.

Prueba de (ii). Dado K ∈ R, existe δ > 0 tal que

y ∈ I, 0 < |y − a| < δ =⇒ f ′(y)
g′(y) > K. (3′)

Para x ∈ I con 0 < |x− a| < δ, aplicando (2) y (3′) concluimos que

f(x)
g(x) = f ′(cx)

g′(cx) > K.

Prueba de (iii). Basta aplicar (ii), cambiando f por −f .

Terminamos la prueba discutiendo el caso a = +∞ con I no mayorado. La hipótesis
(b) nos dice que g es estrictamente monótona, luego g(x) = 0 puede ocurrir a lo sumo
una vez, garantizando la existencia del M del enunciado.
Ahora, usamos la equivalencia entre un límite en +∞ y un límite por la derecha en 0:
tomamos Î = [0, 1

M ) y definimos f̂ , ĝ : Î \ {0} → R mediante

f̂(x) = f

(1
x

)
, ĝ(x) = g

(1
x

)
.

La regla de la cadena nos da la derivabilidad de f y g en Î \ {0} con

f̂ ′(x) = −1
x2 f

′
(1
x

)
, ĝ′(x) = −1

x2 g
′
(1
x

)
,

siendo ambas distintas de 0 para todo x ∈ Î \ {0}. La hipótesis (c) nos da que f̂ y ĝ
tienen límite 0 por la derecha en 0, y usando la regla de l’Hôpital recién demostrada
tenemos que:

ĺım
x→+∞

f(x)
g(x) = ĺım

x→0+

f̂(x)
ĝ(x)

R. L’H.= ĺım
x→0+

f̂ ′(x)
ĝ′(x) = ĺım

x→0+

−1
x2 f

′
(

1
x

)
−1
x2 g′

(
1
x

) = ĺım
x→+∞

f ′(x)
g′(x) ,

entendiendo que los límites anteriores pueden ser un número real o ±∞. ■
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Ni que decir tiene, la regla de l’Hôpital puede aplicarse al estudio de límites laterales o divergencia
lateral de una función en un punto, pues se trata de los límites ordinarios en dicho punto de una
conveniente restricción de la función dada. En tal caso, es esta restricción la que debe satisfacer
las hipótesis de la regla de l’Hôpital, que son más débiles que las exigidas a la función original.
Dicho informalmente, basta con que se satisfagan a un lado del punto que estamos considerando.

La segunda versión de la regla de l’Hôpital se aplica a indeterminaciones del tipo [∞/∞].
Omitimos la demostración de esta por su alta complejidad técnica.

Teorema 5.32. Sea I un intervalo no trivial, a ∈ I y f, g : I \ {a} → R funciones verificando:

(a) f y g son derivables en I \ {a},

(b) g′(x) ̸= 0 para todo x ∈ I \ {a},

(c) |g| diverge a +∞ en el punto a.

Entonces existe ρ > 0 tal que, para x ∈ I con 0 < |x− a| < ρ, se tiene g(x) ̸= 0. Además, se
verifican las siguientes tres implicaciones:

(i) ĺım
x→a

f ′(x)
g′(x) = L ∈ R =⇒ ĺım

x→a

f(x)
g(x) = L.

(ii) f ′(x)
g′(x) → +∞ (x→ a) =⇒ f(x)

g(x) → +∞ (x→ a).

(iii) f ′(x)
g′(x) → −∞ (x→ a) =⇒ f(x)

g(x) → −∞ (x→ a).

Además, si I no está mayorado y tomamos a = +∞, entonces existe un M > 0 tal que g(x) ̸= 0
para todo x ∈ I con x > M , y las implicaciones (i)-(ii)-(iii) siguen siendo válidas. Lo mismo
ocurre si I no está minorado y tomamos a = −∞. ■

5.6 Derivadas sucesivas
Como ya anticipamos al caracterizar las funciones convexas, para una función derivable f tiene
sentido preguntarse por la derivabilidad de la función f ′, definida en el conjunto de puntos
donde f sea derivable. Nos damos cuenta enseguida que este proceso iterarse, dando lugar a
la noción de derivadas sucesivas, y a nuevos espacios de funciones que describen el número de
veces que esta operación puede repetirse. Como es natural, para n ∈ N, la definición de derivada
n−ésima de f viene dada mediante una fórmula recursiva.

Definición 5.33. Para una función f : A→ R, definimos

A1 = {x ∈ A ∩A′ : f es derivable en x},

f (1) = f ′ : A1 → R, f (1)(x) = ĺım
y→x

f(y)− f(x)
y − x

.

Sea ahora n ∈ N y supongamos definida la función derivada n-ésima f (n) : An → R. Cuando
x ∈ An ∩A′

n y f (n) es derivable en x, decimos que f es n+ 1 veces derivable en x y definimos
la (n+ 1)-ésima derivada por

f (n+1)(x) = (f (n))′(x).
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Si An+1 = {An ∩A′
n : f (n) es derivable en x} ̸= ∅, consideramos la función

f (n+1) : An+1 → R, f (n+1)(x) = ĺım
y→x

f (n)(y)− f (n)(x)
y − x

∀x ∈ An+1.

Por conveniencia, para cualquier función f : A→ R escribiremos f (0) = f .

Queda claro de la definición anterior que los conjuntos de definición de las sucesivas derivadas,
An, pueden ser distintos entre sí. Además, este conjunto nunca crece; en cada interacción estamos,
de hecho, eliminando los puntos aislados y los puntos de acumulación en los que la derivada
anterior no vuelve a ser derivable. Por ello, en esta sección trabajaremos preferentemente con
funciones definidas en subconjuntos A ⊂ R sin puntos aislados, esto es, A ⊂ A′. En particular,
cuando A sea un intervalo no trivial o una unión finita de intervalos, como R∗.

Definición 5.34. Para A ⊂ R no vacío y n ∈ N, denotamos por Dn(A) al conjunto de todas
las funciones f : A→ R que son n veces derivables en todo punto de A.

Coherentemente, D0(A) = F(A) y D1(A) = D(A).

Observación: Si f ∈ Dn(A) y k ∈ Z con 0 ≤ k ≤ n, entonces f (k) ∈ D n−k(A). En
particular, para k ≤ n− 1, f (k) es continua. Esto puede fallar cuando k = n.

Definición 5.35. Diremos que f : A → R es de clase Cn en A cuando f ∈ Dn(A) y f (n) es
continua en A. Denotamos por Cn(A) al conjunto de todas las funciones de clase Cn en A.

Por convenio, C0(A) = C(A), y C1(A) el de las funciones derivables con derivada continua.

Definición 5.36. Decimos que f : A→ R es indefinidamente derivable o de clase C∞ en A
cuando f ∈ Dn(A) para todo n ∈ N. Denotamos por C∞(A) al conjunto de todas las funciones
de clase C∞ en A. Equivalentemente,

C∞(A) =
∞⋂
n=1

Dn(A).

Se demuestra sin dificultad que f ∈ C∞(A) si, y solo si, f ∈ Cn(A) para todo n ∈ N.

De estas definiciones se deduce la cadena de inclusiones, válida para todo n ∈ N,

F(A) = D0(A) ⊃ C0(A) ⊃ Dn(A) ⊃ Cn(A) ⊃ Dn+1(A) ⊃ Cn+1(A) ⊃ C∞(A). (5.2)

Al situar una función en alguno de estos espacios cuantificamos su regularidad: cuanto mayor n,
más información tenemos sobre derivadas. Más adelante veremos ejemplos que muestran que
todas las inclusiones anteriores son estrictas incluso en intervalos.

Enumeramos en la siguiente proposición las propiedades más importantes del álgebra de
derivadas sucesivas. Usando los resultados análogos para funciones continuas podemos obtener
los enunciados para funciones de clase Cn y C∞. En todos los casos, la demostración consiste
en una sencilla inducción que omitimos en aras de la brevedad.

Proposición 5.37. Sean n ∈ N, f, g ∈ Dn(A) y h ∈ Dn(B). Entonces

f + g ∈ Dn(A) y (f + g)(n) = f (n) + g(n).
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fg ∈ Dn(A) y

(fg)(n) =
n∑
k=0

(
n

k

)
f (n−k) g(k).

Si g(x) ̸= 0 para todo x ∈ A, f/g ∈ Dn(A).

Si A y B son tales que A ⊂ A′, B ⊂ B′ y f(A) ⊂ B, entonces g ◦ f ∈ Dn(A).

Si A es un intervalo no trivial y f ′(x) ̸= 0 para todo x ∈ A, entonces f−1 ∈ Dn(f(A)).

■

Rematamos esta breve sección dando ejemplos de que las inclusiones de (5.2) son todas estrictas.

Ejemplo

Para cada n ∈ N, la función fn : R→ R definida por

fn(x) = xn−1 |x| (x ∈ R),

verifica que fn ∈ Cn−1(R) \Dn(R).
Resolución. Razonamos por inducción sobre n.

Si n = 1, tenemos f1(x) = |x|, que es continua en R pero no derivable en 0, luego
f1 ∈ C0(R) \D1(R).

Supongamos cierto el enunciado para algún n ∈ N, esto es, fn ∈ Cn−1(R) \Dn(R).

Para x ̸= 0,

f ′
n+1(x) = (xn |x|)′ = nxn−1 |x|+ xn

|x|
x

= (n+ 1)xn−1 |x| = (n+ 1)fn(x).

De la fórmula anterior deducimos que

ĺım
x→0

f ′
n+1(x) = (n+ 1) ĺım

x→0
fn(x) = (n+ 1)fn(0) = 0,

luego fn+1 es derivable en 0 con f ′
n+1(0) = 0. Por tanto fn+1 ∈ D1(R) y, como

f ′
n+1 = (n+ 1)fn ∈ Cn−1(R) \Dn(R) por la hipótesis de inducción, concluimos que

fn+1 ∈ Cn(R) \Dn+1(R).

Ejemplo

Para cada n ∈ N, consideremos gn, hn : R→ R dadas por

gn(x) =

x
2n−1 sin(1/x), x ∈ R∗,

0, x = 0,
hn(x) =

x
2n sin(1/x), x ∈ R∗,

0, x = 0.

Se verifica que gn ∈ C n−1(R) \Dn(R), mientras que hn ∈ Dn(R) \ Cn(R).
Resolución. Los cálculos para el paso inductivo en este caso son engorrosos, así que
nos concentramos en hacer con detalle la etapa base para ambas funciones.

g1 ∈ C0(R) \D1(R) Para x ≠ 0 tenemos claramente que g1 es continua y derivable
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en x, así que centramos nuestra atención en el punto x = 0.

Por un lado, 0 ≤ |x sin(1/x)| ≤ |x|, luego ĺımx→0 g1(x) = 0 = g1(0). Así, g1 ∈ C(R).
Sin embargo,

x sin(1/x)− 0
x− 0 = sin(1/x),

que no tiene límite en x = 0, por tanto g1 /∈ D(R).

h1 ∈ D1(R) \ C1(R) Al igual que antes, h1 es derivable en x ≠ 0 de forma manifiesta.
En x = 0 tenemos

h′
1(0) = ĺım

x→0

x2 sin(1/x)− 0
x− 0 = ĺım

x→0
x sin(1/x) = 0,

luego h1 es derivable en todo R con

h′
1(x) =

2x sin(1/x)− cos(1/x), x ∈ R∗,

0, x = 0.

Sin embargo, la función x 7→ cos(1/x) no tiene límite en x = 0, luego h′
1 no es continua

en 0. Para ver esto último, podemos probar algo mucho más fuerte: para todo y ∈ [−1, 1]
existe {yn} ⊂ R∗ con {yn} → 0 y tal que {cos(1/yn)} → y.

En efecto, la sucesión buscada es yn = 1
arc cos y+2πn .

−1 −0,5 0,5 1

−1

1

x

y

Gráfica de h′
1(x), que presenta una discontinuidad de segunda especie en x = 0, las

únicas que puede tener la derivada de una función derivable.

Para el paso inductivo, definimos ĝn y ĥn de la misma forma que gn y hn, pero
cambiando la función seno por el coseno. Debe probarse por inducción que

gn, ĝn ∈ Cn−1(R) ∩Dn(R), hn, ĥn ∈ Dn(R) \ Cn(R),

apoyándonos en las identidades:

g′
n+1 = (2n+ 1)hn − ĝn,
h′
n+1 = (2n+ 2)gn+1 − ĥn,
ĝ′
n+1 = (2n+ 1)ĥn + gn,
ĥ′
n+1 = (2n+ 2)ĝn+1 + hn.

Se deja al lector interesado la comprobación de los detalles de este razonamiento.
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5.7 Fórmula de Taylor
Es conocido el hecho de que si una función f : A → R es derivable en un punto a ∈ A ∩ A′,
entonces la recta tangente en a es una buena aproximación de f cerca de a en el sentido que

ĺım
x→a

f(x)− (f(a) + f ′(a)(x− a))
x− a

= 0.

Si leemos el numerador de la identidad anterior como el error cometido al aproximar f(x) por
la tangente en a para valores cerca de a, obtenemos la información de que este debe ser más
pequeño que x− a.

Si la función posee derivadas hasta orden n, podemos mejorar la aproximación mediante un
polinomio de grado menor o igual que n: el polinomio de Taylor de orden n en a. Al error
de esta aproximación lo llamaremos resto de Taylor. Su validez se cuantifica con la fórmula
infinitesimal del resto, que describe la velocidad con la que dicho resto tiende a cero cuando
x→ a.

Una estimación más precisa se obtiene con la fórmula de Taylor, un resultado análogo al
teorema del valor medio que involucra las derivadas sucesivas. Veremos varias aplicaciones de
esta fórmula; entre ellas, los desarrollos en serie de Taylor, que nos permiten escribir localmente
una función f como la suma de una serie.

Para averiguar la forma que tendrá dicha aproximación, pensamos en un polinomio de grado n,
que escribimos agrupado en potencias de a ∈ R:

p(x) = α0 + α1(x− a) + α2(x− a)2 + · · ·+ αn(x− a)n =
n∑
k=0

αk(x− a)k,

donde αk son los coeficientes de p.

Ejemplo

Problema. Escribir x2 + 2x+ 1 como suma de potencias de x− 2.
Resolución. Usamos convenientemente el binomio de Newton:

x2 + 2x+ 1 = (x− 2 + 2)2 + 2(x− 2 + 2) + 1
= (x− 2)2 + 4(x− 2) + 4 + 2(x− 2) + 4 + 1
= (x− 2)2 + 6(x− 2) + 9(x− 2)0

Como p ∈ C∞(R), una condición natural que podemos pedir a p(x) es que sus n primeras
derivadas coincidan con las de f(x) en el punto x = a, esto es,

f (k)(a) = p(k)(a) ∀k = 0, 1, . . . n.

Veamos entonces cómo deben ser los coeficientes de este polinomio p(x). Es inmediato comprobar
que α0 = p(a). Ahora, si derivamos la anterior igualdad una o dos veces y evaluamos en x = a
tenemos

p′(x) =
n∑
k=1

k αk(x− a)k−1 ⇒ p′(a) = 1 α1 ⇒ α1 = f ′(a).

p′′(x) =
n∑
k=2

k(k − 1) αk(x− a)k−2 ⇒ p′′(a) = 2 · 1 α2 ⇒ α2 = f ′′(a)
2 .
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Es fácil comprobar por inducción que

p(j)(a) = j!αj ⇒ αj = p(j)(a)
j! ⇒ αj = f j(a)

j! .

lo que nos da la expresión

p(x) =
n∑
k=0

f (k)(a)
k! (x− a)k.

Esto motiva la siguiente definición:

Definición 5.38. Sea f : A→ R una función y n ∈ N∪ {0}. Si f es al menos n veces derivable
en un punto a ∈ A, podemos considerar la función polinómica Tn[f, a] dada por:

Tn[f, a](x) = f(a) + f ′(a)(x− a) + 1
2f

′′(a)(x− a)2 + · · ·+ f (n)(a)
n! (x− a)n

=
n∑
k=0

f (k)(a)
k! (x− a)k ∀x ∈ R

que se denomina polinomio de Taylor de orden n de la función f en el punto a, en honor del
matemático inglés B. Taylor.

En vista de la discusión anterior, es fácil deducir la siguiente propiedad del polinomio de Taylor:

Proposición 5.39. Dada f : A → R una función n−veces derivable en un punto a ∈ A, el
polinomio de Taylor Tn[f, a] es el único polinomio T de orden n tal que T (k)(a) = f (k)(a) para
0 ≤ k ≤ n. ■

Para valorar lo buena aproximación que es Tn[f, a] a f cerca de a, definimos el resto de Taylor,
que será la diferencia entre ambas funciones.

Definición 5.40. Sea f : A→ R n veces derivable en a ∈ A. Definimos el resto de Taylor de
orden n de f en a por

Rn[f, a](x) = f(x)− Tn[f, a](x) ∀x ∈ A.

Podemos anticipar cómo de pequeño será este error observando lo que ocurre para los primeros
valores de n:

Para n = 0, si f es continua en a, entonces ĺım
x→a

R0[f, a](x) = ĺım
x→a

(f(x)− f(a)) = 0.

Para n = 1, si f es derivable en a, entonces

ĺım
x→a

R1[f, a](x)
x− a

= ĺım
x→a

f(x)− f(a)− f ′(a)(x− a)
x− a

= 0,

como ya habíamos remarcado al principio de la sección. En general, al aumentar n esperamos
que el resto se anule cada vez más rápido al acercarnos a a. Para formalizar esto, comenzamos
con una observación fundamental que pone en relación el polinomio de Taylor de una función y
el de su derivada.

Proposición 5.41. Si n ∈ N ∪ {0} y f es n+ 1 veces derivable en a ∈ A, entonces(
Tn+1[f, a]

)′ = Tn[f ′, a].
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Demostración

Es un cálculo directo:

(
Tn+1[f, a]

)′(x) =
n+1∑
k=1

f (k)(a)
k! k(x− a)k−1 =

n+1∑
k=1

f (k)(a)
(k − 1)! (x− a)k−1

=
n∑
k=0

f (k+1)(a)
k! (x− a)k =

n∑
k=0

f ′(k)(a)
k! (x− a)k = Tn[f ′, a](x).

■

Teorema 5.42 (Fórmula infinitesimal del resto). Sea I un intervalo no trivial, n ∈ N y
f ∈ D n−1(I). Si f es n veces derivable en a ∈ I, entonces

ĺım
x→a

Rn[f, a](x)
(x− a)n = ĺım

x→a

f(x)− Tn[f, a](x)
(x− a)n = 0.

Además, Tn[f, a] es el único polinomio de orden n que verifica la igualdad anterior.

Demostración

Hacemos la demostración por inducción en n, teniendo en cuenta que el caso n = 1 es
ya conocido. Supongamos entonces que para algún n ∈ N el teorema se cumple para
toda función que cumpla las hipótesis. Tomemos ahora f ∈ D n(I) con f n+ 1 veces
derivable en a.

De forma clara, el cociente
f(x)− Tn+1[f, a](x)

(x− a)n+1

cumple las hipótesis de la primera regla de l’Hôpital, lo que nos permite considerar el
cociente de las derivadas:

f ′(x)−
(
Tn+1[f, a]

)′(x)
(n+ 1)(x− a)n = f ′(x)− Tn[f ′, a](x)

(n+ 1)(x− a)n = 1
n+ 1

Rn[f ′, a](x)
(x− a)n .

Como f ′ ∈ D n−1(I) y es n veces derivable en a, la hipótesis de inducción aplicada a f ′

y la primera regla de l’Hôpital dan:

ĺım
x→a

1
n+ 1

Rn[f ′, a](x)
(x− a)n = 0 ⇒ ĺım

x→a

Rn+1[f, a](x)
(x− a)n+1 = 0.

Para demostrar la unicidad, supongamos que P es un polinomio de orden n, distinto
de Tn[f, a], cumpliendo

ĺım
x→a

f(x)− P (x)
(x− a)n = 0.

Definimos Q(x) = P (x) − Tn[f, a](x) =
∑n
k=0 αk(x − a)k, que es otro polinomio de

orden n. Como Q(x) no es idénticamente nulo, al menos uno de sus coeficientes será
distinto de cero. Sea m = mı́n{k : αk ̸= 0}. Entonces, para x ̸= a,

Q(x)
(x− a)m = αm +

n∑
k=m+1

αk(x− a)k−m =⇒ ĺım
x→a

Q(x)
(x− a)m = αm ̸= 0.
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Pero como n ≥ m, podemos usar lo demostrado anteriormente para concluir que

ĺım
x→a

Q(x)
(x− a)m = ĺım

x→a

(
P (x)− f(x)

(x− a)m + f(x)− Tn[f, a](x)
(x− a)m

)
= 0,

una contradicción. ■

Notación: En el contexto de la fórmula infinitesimal del resto, a menudo suele usarse
la notación de Landau. Según esta, si f, g : I → R son funciones definidas en un
intervalo I y a ∈ I, decimos que f es de orden inferior a g cuando x→ a, y escribimos
f = o(g(x)) (x→ a), cuando

∀ ε > 0 ∃ δ > 0 :
[
x ∈ I, 0 < |x− a| < δ =⇒ |f(x)| < ε |g(x)|

]
.

En particular, si g(x) ̸= 0 para todo x ∈ I \ {a}, se tiene

ĺım
x→a

f(x)
g(x) = 0.

Usando esta terminología, suele abreviarse la fórmula infinitesimal del resto como

f(x) = Tn[f, a](x) + o((x− a)n) (x→ a).

Esta notación debe entenderse como que f pertenece a una clase de funciones que
verifican una cierta propiedad, y no manipularse como si de una identidad algebraica
se tratase.

La moraleja es que, conforme n aumenta, más laborioso resulta calcular el polinomio de Taylor
de orden n de una función, pero mejoramos la aproximación obtenida, puesto que la diferencia
f − Tn[f, a] tiende a cero más rápido que (x− a)n.

Si separamos el último sumando del polinomio de Taylor en la fórmula infinitesimal del resto,
obtenemos una nueva expresión para la derivada n− ésima.

f (n)(a) = n! ĺım
x→a

f(x)− Tn−1[f, a](x)
(x− a)n

El interés de esta fórmula radica en que permite calcular f (n)(a) conociendo únicamente f (k)(a)
para 0 ≤ k ≤ n−1, que es la información que necesitamos para conocer Tn[f, a](x). Si se quisiera
obtener f (n)(a) usando la definición, tendríamos que calcular f (k)(x) para todo 0 ≤ k ≤ n− 1
al menos para todos los x cerca de a.

Vemos en los siguientes ejemplos cómo el polinomio de Taylor puede usarse para calcular límites
y, cómo la unicidad de este nos permite encontrar sus coeficientes una vez calculado un cierto
límite.

Ejemplo

Problema. Calcular el polinomio de Taylor de grado 3 en x = 0 de la función

f(x) = log(1 + sin x).



Capítulo 5. Funciones derivables 133

Usar este desarrollo para determinar el valor del límite

ĺım
x→0

log(1 + sin x)− x+ x2

2
x3 .

Resolución. Si usáramos la regla de l’Hôpital para calcular este límite, tendríamos
que aplicarla tres veces. En cambio, el polinomio de Taylor en torno a 0 simplifica
notablemente las operaciones.

f(0) = 0.

f ′(x) = cosx
1 + sin x ⇒ f ′(0) = 1.

f ′′(x) = − sin x (1 + sin x)− cos2 x

(1 + sin x)2 = − sin x− 1
(1 + sin x)2 ⇒ f ′′(0) = −1.

f (3)(x) = − cosx (1 + sin x)2 + 2(1 + sin x) cosx (sin x+ 1)
(1 + sin x)4 ⇒ f (3)(0) = 1.

Por tanto, el polinomio de Taylor de orden 3 de f en 0 es

T3[f, 0](x) = x− x2

2 + x3

6 .

La fórmula infinitesimal del resto nos permite escribir

f(x) = x− x2

2 + x3

6 +R3(x), con ĺım
x→0

R3(x)
x3 = 0.

De aquí obtenemos

ĺım
x→0

log(1 + sin x)− x+ x2

2
x3 = ĺım

x→0

x3

6 +R3(x)
x3 = 1

6 .

Ejemplo

Evaluar el siguiente límite:

ĺım
x→0

log(1 + x4)− x4

x8 .

Nota: Aunque aún no hemos dado una definición rigurosa de la función logaritmo,
para este ejemplo solo necesitamos conocer que es la única función R+ → R tal que
log′(x) = 1

x y log(1) = 0.
Resolución. Al encontrar una indeterminación del tipo [0/0], uno podría pensar en
afrontar el problema usando la primera regla de l’Hôpital. Sin embargo, un par de
aplicaciones de este resultado bastan para darse cuenta de que serán necesarias un total
de 8, y que los cálculos se alargan a cada paso. Si bien este acercamiento es factible,
veamos cómo podemos resolver el límite como una sencilla aplicación de la fórmula
infinitesimal del resto.
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Consideramos la función f : R→ R dada por f(y) = log(1 + y). Como la derivada del
logaritmo es una función racional, tenemos f ∈ C∞(R), lo que nos permite calcular

f(0) = 0,

f ′(y) = 1
1 + y

=⇒ f ′(0) = 1,

f ′′(y) = −1
(1 + y)2 =⇒ f ′′(0) = −1.

Por tanto, T2[f, 0](y) = y − 1
2y

2. La fórmula infinitesimal del resto nos dice que

ĺım
y→0

log(1 + y)− y + 1
2y

2

y2 = 0.

La función φ : x 7→ x4 es continua en 0 con φ(0) = 0, así que la continuidad de la
composición de funciones nos da:

ĺım
x→0

log(1 + x4)− x4 + 1
2x

8

x8 = 0 =⇒ ĺım
x→0

log(1 + x4)− x4

x8 = −1
2 .

Usando la caracterización del polinomio de Taylor, hemos probado además que

T8[log(1 + x4), 0] = x4 − 1
2x

8,

sin necesidad de calcular las ocho derivadas de esa función.

La fórmula infinitesimal del resto permite sustituir la condición necesaria de extremo relativo
por otra más fuerte que es necesaria y suficiente.

Proposición 5.43. Sea I un intervalo, a ∈ I◦, n ∈ N y f ∈ D n−1(I). Supongamos que
f (k)(a) = 0 para 1 ≤ k < n, y f (n)(a) ̸= 0.

Entonces:

(i) Si n es par y f (n)(a) > 0, f tiene un mínimo relativo en a.

(ii) Si n es par y f (n)(a) < 0, f tiene un máximo relativo en a.

(iii) Si n es impar, f no tiene un extremo relativo en a.

En particular, f tiene un extremo relativo en a si y sólo si n es par.

Demostración

Como f (k)(a) = 0 para 1 ≤ k < n, el polinomio de Taylor de orden n de f en a es

Tn[f, a](x) = f(a) + f (n)(a)
n! (x− a)n.

Por la fórmula infinitesimal del resto,

ĺım
x→a

f(x)− f(a)
(x− a)n = f (n)(a)

n! .
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De aquí se deduce que, cerca del punto a, el cociente de la izquierda tiene el mismo
signo que fn(a), lo que nos proporciona un δ > 0 tal que, si 0 < |x− a| < δ, entonces

f(x)− f(a)
(x− a)n · f (n)(a) > 0. (∗)

Si n es par, (x− a)n > 0 para x ≠ a, y por (∗) el signo de f(x)− f(a) coincide
con el de f (n)(a) cerca de a. Por tanto, si f (n)(a) > 0 resulta f(x) ≥ f(a) para
x próximo a a (mínimo en a), mientras que si f (n)(a) < 0 resulta f(x) ≤ f(a)
(máximo en a).

Si n es impar, (x− a)n cambia de signo al cruzar a. La desigualdad (∗) implica
entonces que f(x)− f(a) cambia de signo en cualquier vecindad de a, luego no
puede haber extremo relativo en a.

■

Aunque el resultado anterior nos proporcione una condición necesaria y suficiente que deben
cumplir los extremos relativos, no debe entenderse como una regla que puede aplicarse siempre.
De entrada, las hipótesis de esta proposición no tienen por qué cumplirse. Por ejemplo, una
función f puede tener un extremo relativo en a ∈ I sin ser siquiera continua en dicho punto, o
puede que f ′(a) = 0, pero que f no sea dos veces derivable en a.

Ejercicio: Sea f ∈ D3(R) con f ′(0) ̸= 0, y g : R→ R la función dada por g(x) = x2f(x)
para todo x ∈ R. Probar que g tiene un extremo relativo en x = 0 si, y solo si, f(x) ̸= 0.

La fórmula infinitesimal del resto describe la rapidez con la que el resto de Taylor de una
función en un punto a se hace cero al acercarnos a a, pero no aporta información sobre el
valor de dicho resto en puntos distintos de a. Si imponemos unas hipótesis ligeramente más
fuertes, obtendremos ahora una descripción del resto de Taylor que sí permite, en muchos casos,
estimar ese valor. A los resultados de este tipo los agruparemos bajo el nombre genérico de
Fórmulas de Taylor ; la diferencia entre unas y otras está, básicamente, en la expresión concreta
que proporcionan para el resto.

Teorema 5.44 (Fórmula de Taylor con resto de Lagrange). Sea I un intervalo no trivial y
sea f ∈ Cn(I) ∩Dn+1(I◦), con n ∈ N ∪ {0}. Entonces, para cualesquiera a, x ∈ I con a ≠ x,
podemos escribir

Rn[f, a](x) = f (n+1)(c)
(n+ 1)! (x− a)n+1,

donde c es un punto intermedio entre a y x, es decir,

mı́n{a, x} < c < máx{a, x}.

Demostración

Sean a, x ∈ I con a ̸= x, que consideraremos fijos en todo el razonamiento, y sea

J = [mı́n{a, x},máx{a, x}],

intervalo que obviamente verifica J ⊂ I y J◦ ⊂ I◦. Aplicaremos el teorema del valor
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medio generalizado a las funciones

φ,ψ : J → R, φ(t) =
n∑
k=0

f (k)(t)
k! (x− t)k, ψ(t) = −(x− t)n+1 ∀t ∈ J.

Como f ∈ Cn(I) ∩ Dn+1(I◦), se deduce que φ ∈ C0(J) ∩ D1(J◦), mientras que
ψ ∈ C∞(J) por ser polinómica. El TVMG nos da un punto c ∈ J◦ tal que

(φ(x)− φ(a))ψ′(c) = (ψ(x)− ψ(a))φ′(c).

Solo queda reescribir esta igualdad en términos de f . Empezamos por lo más sencillo:

φ(x)− φ(a) = f(x)−
n∑
k=0

f (k)(a)
k! (x− a)k = Rn[f, a](x).

Además,
ψ(x)− ψ(a) = (x− a)n+1, ψ′(c) = (n+ 1)(x− c)n.

El cálculo de φ′(c) tampoco ofrece dificultad. Para t ∈ J tenemos

φ′(t) = f ′(t) +
n∑
k=1

(
f (k+1)(t)

k! (x− t)k − f (k)(t)
(k − 1)!(x− t)

k−1
)

=
n∑
k=0

f (k+1)(t)
k! (x− t)k −

n−1∑
k=0

f (k+1)(t)
k! (x− t)k

= f (n+1)(t)
n! (x− t)n,

y, en particular,

φ′(c) = f (n+1)(c)
n! (x− c)n.

Al sustituir los valores de las derivadas, obtenemos

(n+ 1)(x− c)nRn[f, a](x) = f (n+1)(c)
n! (x− c)n(x− a)n+1,

y la igualdad buscada se obtiene dividiendo ambos miembros por (n+1)(x−c)n ̸= 0. ■

En el caso n = 0, la hipótesis del teorema anterior se reduce a f ∈ C0(I)∩D1(I◦) y la conclusión
que se obtiene es

f(x)− f(a) = f ′(c)(x− a),
que coincide exactamente con la hipótesis y la tesis del teorema del valor medio. Podemos
afirmar, por tanto, que la fórmula de Taylor generaliza el teorema del valor medio, de la misma
manera que la fórmula infinitesimal del resto generalizaba la definición de derivada: en ambos
casos se pone en relación el comportamiento de la función con el de sus derivadas sucesivas.

Ejemplo

Problema. Usando la fórmula de Taylor, aproximar 6
√
e con un error menor a 10−4.

Nota: Todavía no hemos dado una definición completa de la función exponencial, pero
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para este ejemplo solo debemos recordar que es la única función derivable exp : R→ R+

tal que exp′(x) = exp(x) y exp(0) = 1.
Resolución. Sabiendo que la derivada de la exponencial es ella misma, tenemos
inmediatamente que exp ∈ C∞(R) y su polinomio de Taylor es, para cada n ∈ N,

Tn[exp, 0](x) =
n∑
k=0

e0

k!x
k =

n∑
k=0

xk

k! .

Como estimación de 6
√
e usaremos, por supuesto, Tn[exp, 0](1/6) para un n ∈ N

conveniente. Pasamos a determinar qué valor de n necesitamos para obtener un error
menor a 10−4:

La fórmula de Taylor nos dice que, para algún c ∈ (0, 1/6),

Rn[exp, 0](1/6) = ec

(n+ 1)!

(1
6

)n+1
<

3
(n+ 1)!6n+1 .

Para n = 3 ya tenemos R3[exp, 0](1/6) = 1
10368 < 10−4. Así pues,

T3(exp, 0)(1/6) =
3∑

k=0

1
6k k! = 1531

1296 ,

aproxima a 6
√
e hasta el tercer decimal.

Nos damos cuenta de que, al aumentar n ∈ N, podemos hacer el error Rn[exp, 0](1/6)
tan pequeño como queramos, ya que { 3

(n+1)!6n+1 } → 0 (n→ +∞). En realidad, lo que
tenemos es la suma de una serie:

e1/6 = ĺım
n→+∞

Tn[exp, 0](1/6) + ĺım
n→+∞

Rn[exp, 0](1/6) =
+∞∑
n=0

1
n!6n .

En lo que sigue, fijamos un intervalo no trivial I, una función f ∈ C∞(I) y un punto a ∈ I◦.
Nos preguntamos si lo que hemos hecho con la función exponencial y el punto x = 1/6 puede
hacerse para otros puntos x ∈ I, es decir, si

f(x) = ĺım
n→+∞

Tn[f, a](x) =
+∞∑
n=0

fn(a)
n! (x− a)n. (5.3)

1 x ̸= a

ex

T1

T2
T3

a = 0 x ̸= a

ex

T1

T2
T3

a = 0

Para cada n ∈ N, sabemos cómo se comporta Tn[f, a] para x cerca de a. Nos preguntamos si
en puntos x ̸= a el polinomio Tn[f, a](x) también es una buena aproximación de f(x) al hacer

n→ +∞.
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Para estudiar este problema, conviene adoptar el segundo punto de vista, y en vez de trabajar
con la sucesión {Tn[f, a](x)}, hacerlo con la serie que aparece en el tercer miembro, llamada la
serie de Taylor de f en el punto a.

Nota: Como consecuencia de la fórmula infinitesimal del resto tenemos que, para cada
n ∈ N ∪ {0}, existe δ > 0 tal que, si 0 < |x− a| < δ, entonces

0 ≤ |Rn[f, a](x)| ≤ |x− a|n .

Podríamos pensar, ingenuamente, que tan pronto |x− a| < 1, se tendrá (5.3), puesto
que entonces ĺımn→+∞ |x− a|n = 0 y por tanto ĺımn→+∞Rn[f, a](x) = 0.

Este razonamiento es erróneo, y la clave está en que el δ > 0 encontrado depende de
n. Es perfectamente posible que δ(n)→ 0 cuando n→ +∞, haciendo que la identidad
anterior solo sea válida para x = a, lo que nos dará a posteriori un desarrollo en serie
de Taylor perfectamente inútil, pues la serie será convergente solo para x = a.

¡Es muy distinto fijar n ∈ N ∪ {0} y tomar límite x → a que fijar un x ∈ I y tomar
límite n→ +∞!

Definición 5.45 (Serie de Taylor). Sea x ∈ I. Llamamos serie de Taylor de f en el punto a
evaluada en x a la serie numérica

∑
n≥0

f (n)(a)
n! (x− a)n.

Para cada n ∈ N∪ {0}, su n-ésima suma parcial coincide con el polinomio de Taylor de orden n:

Tn[f, a](x) =
n∑
k=0

f (k)(a)
k! (x− a)k.

Cuando pensamos en x como variable, hablamos simplemente de la serie de Taylor de f en a.

Usando la fórmula de Taylor con resto de Lagrange, sabemos que, para cada n ∈ N∪ {0}, existe
un punto cn situado entre a y x tal que

f(x)−
n∑
k=0

f (k)(a)
k! (x− a)k = f (n+1)(cn)

(n+ 1)! (x− a)n+1.

Usando el criterio del cociente, nos damos cuenta de que la serie

∑
n≥0

(x− a)n

n!

es absolutamente convergente, luego la sucesión{
(x− a)n+1

(n+ 1)!

}
−→ 0.

No es difícil adivinar entonces que una condición suficiente para tener (5.3) es que la sucesión
fn+1(cn) sea acotada.



Capítulo 5. Funciones derivables 139

Proposición 5.46. Sea I un intervalo no trivial, f ∈ C∞(I), a ∈ I◦ y x ∈ I. Supongamos que
se cumple la siguiente propiedad:

Para toda sucesión {cn}n≥0 de puntos comprendidos entre a y x (es decir, mı́n{a, x} < cn <
máx{a, x} para todo n), la sucesión {f (n+1)(cn)}n≥0 es acotada.

Entonces la serie de Taylor de f en a, evaluada en x,

∑
n≥0

f (n)(a)
n! (x− a)n,

es convergente y su suma es f(x). ■

En general, la sucesión {fn+1(cn)} podrá ser divergente, dando lugar a series no convergentes,
o a series convergentes cuya suma difiere de f(x).

A las funciones que verifican (5.3) se les da el nombre de funciones analíticas.

Definición 5.47. Sea I un intervalo no trivial, f ∈ C∞(I) y a ∈ I◦. Decimos que f es analítica
en a si existe un δ > 0, que depende de a, tal que (a− δ, a+ δ) ⊂ I y

f(x) =
+∞∑
n=0

f (n)(a)
n! (x− a)n ∀x ∈ (a− δ, a+ δ).

Si I = I◦, decimos que f es analítica en I si es analítica para todo punto a ∈ I. El conjunto de
las funciones analíticas en I se denota por Cω(I).

La definición anterior no deja dudas: las funciones analíticas en I son un subconjunto de las
funciones de clase C∞ en I. Cabe preguntarse, como hicimos a principio de la sección, si esta
inclusión es estricta, esto es, si pueden existir funciones para las que (5.3) solo ocurra en el caso
trivial x = a. La respuesta es afirmativa.

Ejemplo

Consideramos la función f : R→ R dada por

f(x) =
{
e−1/x2

, x ̸= 0,
0, x = 0.

Se tiene que f ∈ C∞(R) pero f no es analítica en x = 0.
Resolución. Es fácil comprobar por inducción que, para cada n ∈ N, la derivada
n-ésima de f en los puntos x ̸= 0 tiene la forma

f (n)(x) = Pn

(1
x

)
e−1/x2

,

donde Pn es un polinomio. Haciendo un cambio de variable, tenemos entonces

ĺım
x→0

f (n)(x) = ĺım
x→±∞

Pn(x)e−x2 = 0 para todo n ∈ N.

Por tanto, f es indefinidamente derivable en R con f (n)(0) = 0 para todo n. En
consecuencia, el polinomio de Taylor de orden n de f en a = 0 es

Tn[f, 0](x) =
n∑
k=0

f (k)(0)
k! xk ≡ 0,
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y la serie de Taylor de f en 0 es simplemente

∑
n≥0

f (n)(0)
n! xn = 0, x ∈ R.

Esta serie converge para todo x, pero su suma sólo coincide con f(x) en x = 0, ya que
f(x) = e−1/x2 ̸= 0 para cualquier x ̸= 0.

Por conveniencia, concluimos esta sección con el desarrollo en serie de las funciones elementales,
que discutiremos y probaremos una vez que las hayamos introducido adecuadamente en el
siguiente capítulo.

Proposición 5.48. Se tiene:

Para cualesquiera a, x ∈ R,

ex =
+∞∑
n=0

ea

n! (x− a)n.

Para a = 0, y cualquier x ∈ R,

sin x =
+∞∑
n=0

(−1)n x2n+1

(2n+ 1)! , cosx =
+∞∑
n=0

(−1)n x2n

(2n)! .

Dado a > 0, se tiene

log x = log a+
+∞∑
n=1

(−1)n+1 1
nan

(x− a)n, x ∈ (0, 2a].

Para a = 0 y x ∈ [−1, 1],

arctan x =
+∞∑
n=0

(−1)n x2n+1

2n+ 1 .

Ejercicio: Demostrar que tan(n)(x) = Pn(tan x) para todo n ∈ N, donde Pn es
un polinomio (no necesariamente de grado n). Usa esto para calcular T6[tan, 0](x).
Ejercicio: Calcular los siguientes límites

ĺım
x→0

ex − cos(
√

2x)− x
(tan x)2 , ĺım

x→0

tan x arctan x− x2

x6 .

Ejercicio: Encontrar α, β, γ ∈ R de forma que

ĺım
x→0

( 5√1 + x5 − 1− αx5)(x− tan x− βx3)
x15 = γ.
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Funciones integrables

6.1 Continuidad uniforme
Como paso previo al estudio del Cálculo Integral, introducimos una propiedad más fuerte que la
continuidad, que es la continuidad uniforme, que será fundamental para demostrar la existencia
de la integral.

Recordamos la definición de continuidad: si f : A→ R una función continua, entonces podemos
escribir:

∀x ∈ A ∀ε > 0 ∃δ > 0 : y ∈ A, |y − x| < δ ⇒ |f(y)− f(x)| < ε. (C)

Aquí δ depende de ε, pero también del punto x ∈ A que estemos considerando. Fijado ε > 0,
algunos puntos de A obligan a tomar δ muy pequeño, mientras que otros permiten un δ
relativamente grande, según la rapidez con que varíe f cerca de cada punto.

La idea de continuidad uniforme es exigir que, para cada ε > 0, podamos encontrar un mismo
δ > 0 que funcione para todos los puntos del conjunto A.

Definición 6.1. Sea f : A→ R. Diremos que f es uniformemente continua en A cuando, para
cada ε > 0, existe δ > 0 tal que, si x, y ∈ A verifican |y − x| < δ, entonces |f(y) − f(x)| < ε.
Simbólicamente,

∀ε > 0 ∃δ > 0 : x, y ∈ A, |y − x| < δ ⇒ |f(y)− f(x)| < ε. (CU)

La diferencia entre (C) y (CU) es sutil pero importante: en la continuidad puntual, el δ puede
depender de ε y del punto x, mientras que en la continuidad uniforme δ sólo depende de ε. Es
inmediato que, si f es uniformemente continua, entonces f es continua. El recíproco, en cambio,
es falso, como veremos enseguida.

Proposición 6.2. Una función f : A→ R es uniformemente continua en A si, y solo si, para
cualesquiera dos sucesiones {yn} y {xn} de puntos de A tales que {yn − xn} → 0, se cumple

{f(yn)− f(xn)} → 0.

Demostración

⇒ Sea ε > 0. Como f es uniformemente continua, tenemos un δ > 0 tal que si

141
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|x− y| < δ entonces |f(x)− f(y)| < ε. Por otro lado, sabemos que {yn − xn} → 0,
luego existe m ∈ N tal que, para todo n ≥ m, se tiene |yn − xn| < δ, y por tanto
|f(yn)− f(xn)| < ε. Hemos probado que {f(yn)− f(xn)} → 0.

⇐ Para la implicación recíproca, suponemos que f no es uniformemente continua, y
construiremos dos sucesiones {xn} e {yn} tales que {xn − yn} → 0 pero |xn − yn|↛ 0.

Como f no es uniformemente continua, encontramos un ε0 > 0 tal que, para cada δ > 0,
existen x, y ∈ A con |y − x| < δ y |f(y)− f(x)| ≥ ε0. Para cada n ∈ N aplicamos esto
con δ = 1/n y obtenemos puntos xn, yn ∈ A con |yn−xn| < 1/n y |f(yn)−f(xn)| ≥ ε0.
Por tanto, {f(xn)− f(xn)} no puede converger a 0. ■

Usando esta caracterización, encontramos ejemplos sencillos de funciones continuas que no son
uniformemente continuas.

Ejemplo

La función f : R → R dada por f(x) = x2 para todo x ∈ R es continua pero no es
uniformemente continua.
Resolución. Consideramos las sucesiones xn = n + 1

n e yn = n para todo n ∈ N.
Claramente {xn − yn} → 0, pero

xn
2 − yn2 = (xn − yn)(xn + yn) = 1

n

(
2n+ 1

n

)
= 2 + 1

n2 → 2.

Introducimos ahora una familia importante de funciones uniformemente continuas.

Definición 6.3. Sea f : A→ R. Diremos que f es lipschitziana cuando existe una constante
M ≥ 0 tal que

|f(y)− f(x)| ≤M |y − x| ∀x, y ∈ A. (6.1)

Si f es una función lipschitziana, existe una constante mínima M0 ≥ 0 que verifica la desigualdad
anterior, a saber,

M0 = sup
{ |f(y)− f(x)|

|y − x|
: x, y ∈ A, x ̸= y

}
.

Dicha constante se denomina la constante de Lipschitz de f .

Proposición 6.4. Toda función lipschitziana es uniformemente continua.

Demostración

Dado ε > 0, basta tomar 0 < δM < ε; entonces, si |y − x| < δ, se tiene

|f(y)− f(x)| ≤M |y − x| < ε.

■

Proposición 6.5. Sea I un intervalo no trivial y f ∈ C(I)∩D(I◦). Las siguientes afirmaciones
son equivalentes:
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(1) f es lipschitziana en I.

(2) La derivada f ′ está acotada en I◦, es decir, existe M ≥ 0 tal que |f ′(x)| ≤ M para todo
x ∈ I◦.

En el caso de que se verifiquen (1) y (2), la constante de Lipschitz de f viene dada por

M0 = sup{ |f ′(x)| : x ∈ I◦ }. (6.2)

Demostración

(1) ⇒ (2). Sea M0 la constante de Lipschitz de f . Para x ∈ I◦ y y ∈ I, y ≠ x, se tiene∣∣∣∣f(y)− f(x)
y − x

∣∣∣∣ ≤M0.

Tomando límites cuando y → x obtenemos |f ′(x)| ≤ M0, de donde se deduce que f ′

está acotada y que
sup{ |f ′(x)| : x ∈ I◦ } ≤M0.

(2) ⇒ (1). Sea M = sup{ |f ′(x)| : x ∈ I◦ }, que existe por hipótesis. Dados x, y ∈ I con
x ̸= y, el TVM proporciona un punto c ∈ I◦ tal que

f(y)− f(x)
y − x

= f ′(c),

y por tanto
|f(y)− f(x)| = |f ′(c)| |y − x| ≤M |y − x|.

Esto prueba que f es lipschitziana en I para la constante M . Por tanto, M0 ≤M por
definición de la constante de Lipschitz. ■

Del resultado anterior y el teorema de Weierstrass se deduce un criterio cómodo para garantizar
que la derivada esté acotada.

Corolario 6.6. Sean a, b ∈ R con a < b y f ∈ C1[a, b]. Entonces f es lipschitziana en [a, b], con
constante de Lipschitz

M0 = máx{ |f ′(x)| : x ∈ [a, b]}.

Como ejemplo de función uniformemente continua que no es lipschitziana, consideramos la
función raíz cuadrada.

Ejemplo

La función f : R+
0 → R, f(x) =

√
x, es uniformemente continua pero no es lipschitziana.

Resolución. Para probar la continuidad uniforme, tomamos x, y ∈ R+
0 con x < y y

observamos que

|√y −
√
x| = √y −

√
x = y − x

√
y +
√
x
≤ y − x
√
y
≤ y − x√

y − x
=
√
y − x =

√
|y − x|,

luego
|√y −

√
x| ≤

√
|y − x|,

y esta desigualdad sigue siendo válida si x ≥ y.
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Dado ε > 0, basta imponer |y− x| < ε2 para que |√y−
√
x| < ε, lo que muestra que f

es uniformemente continua.

Sin embargo, f no es lipschitziana en R+
0 . En efecto, f es derivable en (R+

0 )◦ = R+ y

f ′(x) = 1
2
√
x
,

que se hace arbitrariamente grande cuando x→ 0+. Por la proposición anterior, esto
impide que exista una constante de Lipschitz en R+

0 .

El resultado siguiente mejora lo visto más arriba: no sólo las funciones derivables con derivada
continua en un intervalo cerrado y acotado son uniformemente continuas, sino que cualquier
función continua en un intervalo de ese tipo lo es.

Teorema 6.7 (Teorema de Heine). Sean a, b ∈ R con a < b y f : [a, b] → R una función
continua. Entonces f es uniformemente continua en [a, b].

Demostración

Razonamos por contradicción. Supongamos que f no es uniformemente continua. Por
la caracterización mediante sucesiones, existen ε0 > 0 y dos sucesiones {yn} y {xn} de
puntos de [a, b] tales que |yn − xn| → 0 pero

|f(xn)− f(yn)| ≥ ε0 para todo n ∈ N.

Como {xn} es una sucesión en el intervalo cerrado y acotado [a, b], el Teorema de
Bolzano–Weierstrass nos proporciona una subsucesión {xσ(n)} que converge a cierto
x ∈ [a, b]. Del hecho |yn − xn| → 0 se deduce que también {yσ(n)} converge a x.
La continuidad de f en x nos da

f(xσ(n))→ f(x), f(yσ(n))→ f(x),

y por tanto
|f(yσ(n))− f(xσ(n))| → 0.

Esto contradice la condición |f(xn)−f(yn)| ≥ ε0 para todo n, aplicada a la subsucesión.
La suposición inicial era falsa y f es uniformemente continua en [a, b]. ■

Este teorema pone de manifiesto que la continuidad uniforme, al igual que la convexidad y a
diferencia de la continuidad puntual o de la derivabilidad, es una propiedad global: depende del
comportamiento de la función en todo el dominio considerado. Como consecuencia, si f : R→ R
es una función continua, entonces su restricción a cualquier intervalo cerrado y acotado [a, b] es
uniformemente continua.

Ejercicio: Sea f : R+ → R dada por f(x) = 1/x para todo x > 0. Dado a > 0, probar
que f |[a,+∞] es lipschitziana, pero f |(0,a] no es uniformemente continua.



Capítulo 6. Funciones integrables 145

6.2 La integral de Riemann
La noción de integral está íntimamente ligada, desde sus orígenes, a las ideas de área y volumen.
Ya en la antigüedad se utilizaban procedimientos como el método de exhaución, comentado al
inicio del capítulo 5, para aproximar el área de regiones planas o el volumen de sólidos mediante
figuras cada vez más finas, que pueden entenderse como antecedentes lejanos e inspiración de la
teoría moderna de la integración. Sin embargo, no fue hasta el siglo XIX cuando se formuló una
definición matemática precisa de integral, debida a Cauchy, y se empezó a estudiar la integral
como un objeto teórico con significado propio, más allá de ser simplemente la operación inversa
de la derivación.

La necesidad de refinar el concepto de integral surgió cuando el análisis empezó a trabajar con
funciones cada vez más generales. El desarrollo de las series de Fourier y el cambio de punto
de vista sobre qué debe considerarse una función mostraron que la intuición geométrica de
área bajo la curva ya no bastaba: hay funciones cuya gráfica no determina de manera obvia
una región con área bien definida. Ejemplos como el de la función que en [0, 1] vale 2 en los
racionales y 1 en los irracionales ponen de manifiesto que es necesario precisar matemáticamente
qué queremos decir con área antes de hablar de integrales.

0 1

1

2
y = f(x)

¿Determina f un recinto con área? En caso afirmativo, ¿su área es 1? ¿2?

En este capítulo estudiaremos la integral de Riemann, que mejora y generaliza la definición de
Cauchy sin añadir dificultad adicional. Su construcción se basa en aproximar el área mediante
sumas de rectángulos cada vez más finos y en poner en juego las herramientas de límites
desarrolladas en capítulos anteriores. La teoría de la integral que hoy se considera más completa
es la integral de Lebesgue, adecuada para tratar funciones muy generales, pero cuyo estudio
queda fuera del alcance de este curso. Nuestro objetivo será comprender bien la integral de
Riemann, sus propiedades básicas y, sobre todo, el Teorema Fundamental del Cálculo, que
establece el vínculo profundo entre derivación e integración y convierte a la integral en una
herramienta central del análisis.

Comenzamos especificando el tipo de conjuntos cuya área queremos definir.

Definición 6.8. Sea f : [a, b] → R una función acotada. Llamamos R(f ; a, b) a la región del
plano R× R limitada por la gráfica y = f(x), el eje de abscisas y las rectas verticales x = a y
x = b.

Definición 6.9. Sea f : A→ R una función. Definimos la parte positiva y la parte negativa de
f como las funciones f+, f− : A→ R dadas por

f+(x) = |f(x)|+ f(x)
2 = máx{f(x), 0}, f−(x) = |f(x)| − f(x)

2 = máx{−f(x), 0}.
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a b

y = f(x)

Conjunto R(f, a, b) de una función que cambia de signo.

a b

y = f(x)

a b

y = f+(x)

a b

y = f−(x)

Nótese que las funciones parte positiva y parte negativa son ambas positivas. Además,
se tienen las siguientes relaciones, de comprobación inmediata:

f = f+ − f− y |f | = f+ + f−.
Si f(x) ≥ 0, entonces f+(x) = f(x) y f−(x) = 0.
Si f(x) ≤ 0, entonces f+(x) = 0 y f−(x) = −f(x).

Para dar sentido al área de R(f, a, b) usando la integral de Riemann, aproximamos este recinto
mediante rectángulos cada vez más finos. Para ello, comenzamos dividiendo el intervalo [a, b] en
un número finito de subintervalos que no se solapan.

Definición 6.10. Sean a, b ∈ R con a < b. Una partición de [a, b] es un conjunto finito de
puntos

P = {a = x0 < x1 < x2 < · · · < xn−1 < xn = b},

que divide al intervalo [a, b] en los subintervalos [xk−1, xk], para k = 1, . . . , n.

Dada una función f : [a, b]→ R acotada y una partición P de [a, b], elegimos en cada subintervalo
[xk−1, xk] un punto tk. Sobre cada uno de ellos consideramos el rectángulo de base [xk−1, xk] y
altura f(tk) (pudiendo quedar por encima o por debajo del eje x según el signo de f(tk)). La
suma de las áreas con su signo es lo que llamamos suma de Riemann.

Definición 6.11. Sea P = {a = x0 < · · · < xn = b} una partición de [a, b] y, para cada
k = 1, . . . , n, tomemos un punto cualquiera tk ∈ [xk−1, xk]. Llamamos suma de Riemann de f
asociada a P a la cantidad

σ(f, P ) =
n∑
k=1

f(tk) (xk − xk−1).

Nótese que para cada partición P , podemos considerar infinitas sumas de Riemann dependiendo
de cómo se elijan los puntos tk ∈ [xk−1, xk]. Si f toma valores positivos y negativos, podemos
descomponerla como f = f+ − f−. Entonces

σ(f, P ) =
n∑
k=1

f(tk) (xk − xk−1) =
n∑
k=1

(
f+(tk)− f−(tk)

)
(xk − xk−1) = σ(f+, P )− σ(f−, P ).
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En este caso, σ(f, P ) puede interpretarse como una aproximación del área de R(f+, a, b) menos
el área de R(f−, a, b).

Para controlar mejor las aproximaciones introducimos las sumas superior e inferior, que se
obtienen tomando, en cada subintervalo, las alturas máximas y mínimas que puede alcanzar f .

Definición 6.12. Sea P = {a = x0 < · · · < xn = b} una partición de [a, b] y sea f : [a, b]→ R
una función acotada. Definimos

Mk = sup{f(x) : x ∈ [xk−1, xk]}, mk = ı́nf{f(x) : x ∈ [xk−1, xk]}

para k = 1, . . . , n. Las sumas

S(f, P ) =
n∑
k=1

Mk (xk − xk−1), I(f, P ) =
n∑
k=1

mk (xk − xk−1)

se llaman, respectivamente, suma superior e suma inferior de f para la partición P .

a b

y = f(x)

I(f, P ) a b

y = f(x)

S(f, P )

Una propiedad sencilla pero importante es la siguiente: si tk ∈ [xk−1, xk], entonces mk ≤ f(tk) ≤
Mk para todo k, y por tanto

I(f, P ) ≤ σ(f, P ) ≤ S(f, P )

para cualquier suma de Riemann σ(f, P ) asociada a la partición P .

Estas sumas tienen una interpretación geométrica clara: S(f, P ) e I(f, P ) son aproximaciones,
por exceso y por defecto respectivamente, del área de R(f+, a, b) menos el área de R(f−, a, b).

Supongamos que f : [a, b] → R es acotada y positiva. Para cada partición P de [a, b] hemos
definido las sumas inferior y superior

I(f, P ) ≤ S(f, P ).

El área exacta de la región R(f, a, b) debe ser un número mayor o igual que cualquier suma
inferior y menor o igual que cualquier suma superior. Llamemos P [a, b] al conjunto de todas las
posibles particiones de [a, b]. De hecho, se tiene:

Lema 6.13. Sea f : [a, b]→ R acotada. Entonces el conjunto de todas las sumas inferiores de
f está mayorado, el conjunto de todas sus sumas superiores está minorado, y se cumple

sup{I(f, P ) : P ∈ P[a, b]} ≤ ı́nf{S(f, P ) : P ∈ P[a, b]}.

Demostración

Por supuesto, fijada una partición P , se tiene trivialmente que I(f, P ) ≤ S(f, P ). Lo
que se necesita demostrar es mucho más restrictivo: que esta relación se mantiene



Capítulo 6. Funciones integrables 148

independientemente de la partición que tomemos para hacer cada suma.

Empezamos viendo que al refinar una partición al añadirle un solo punto, la correspon-
diente suma superior disminuye y la suma inferior aumenta.

Dada P = {a = x0 < x1 < · · · < xn = b}, consideramos la partición que resulta de
añadirle un punto c entre xk−1 y xk, para algún k ∈ {1, . . . , n}:

P ′ = {a = x0 < x1 < · · · < xk−1 < c < xk < · · · < xn = b}.

Al pasar de P a P ′, todos los sumandos de S(f, P ) se quedan igual salvo el correspon-
diente al subintervalo [xk−1, xk], que se sustituye por la suma de dos. Si nos fijamos en
dichos sumandos, vemos que

sup{f(t) : t ∈ [xk−1, c]} (c− xk−1) + sup{f(t) : t ∈ [c, xk]} (xk − c)
≤ mk(c− xk−1 + xk − c) = mk(xk − xk−1).

Por tanto S(f, P ′) ≤ S(f, P ). Un razonamiento análogo, usando ínfimos en vez de
supremos, muestra que

I(f, P ′) ≥ I(f, P ).

Mediante una sencilla demostración por inducción obtenemos que si P, P ′ ∈ P[a, b] y
P ⊂ P ′ (es decir, P ′ tiene al menos todos los puntos de P ), entonces

I(f, P ) ≤ I(f, P ′) ≤ S(f, P ′) ≤ S(f, P ).

Tomemos ahora dos particiones cualesquiera P,Q ∈ P[a, b] y consideremos su unión
P ∪Q, que es una partición que refina a ambas. Aplicando la desigualdad anterior a
los pares (P, P ∪Q) y (Q,P ∪Q), obtenemos

I(f, P ) ≤ I
(
f, P ∪Q

)
≤ S

(
f, P ∪Q

)
≤ S(f,Q).

Así, cualquier suma inferior es menor o igual que cualquier suma superior. En particular,
el conjunto de todas las sumas inferiores está mayorado por cualquier suma superior y
el conjunto de todas las sumas superiores está minorado por cualquier suma inferior.
Esto implica

sup{I(f, P ) : P ∈ P[a, b]} ≤ ı́nf{S(f, P ) : P ∈ P[a, b]},

tal como queríamos. ■

Definición 6.14. Sea f : [a, b]→ R una función acotada tal que f(x) ≥ 0 para todo x ∈ [a, b].
Diremos que el conjunto ordenado R(f ; a, b) tiene área cuando se verifica

ı́nf{S(f, P ) : P ∈ P[a, b]} = sup{I(f, P ) : P ∈ P[a, b]}.

Al valor común lo llamaremos el área de R(f, a, b). En este caso diremos también que f es
integrable Riemann en [a, b] y definimos∫ b

a
f(x) dx = área(R(f ; a, b)).

Definición 6.15. Sea f : [a, b]→ R acotada. Diremos que f es integrable Riemann en [a, b] si
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lo son f+ y f−. En tal caso definimos∫ b

a
f(x) dx = área

(
R(f+; a, b)

)
− área(R(f−; a, b)

)
.

Es fácil comprobar que si f es integrable entonces también lo es |f | = f+ + f−. Además, si |f |
es integrable y lo es f+ o bien f−, entonces ambas son integrables. Además, se tiene la siguiente
caracterización.

Proposición 6.16. Sea f : [a, b]→ R acotada. Entonces f es integrable si, y solo si, para todo
ε > 0 existe una partición Pε de [a, b] tal que

S(f, Pε)− I(f, Pε) < ε.

Demostración

Esta demostración no se vio en clase.

En primer lugar, nótese que podemos suponer que f ≥ 0, ya que para toda constante
C ∈ R se tiene

S(f+C,P )−I(f+C,P ) = S(f, P )+C(b−a)−I(f, P )−C(b−a) = S(f, P )−I(f, P ),

donde hemos usado que las sumas superior e inferior de cualquier constante coinciden
con el área del rectángulo de base b − a y altura C. Por tanto, si f toma valores
negativos, podemos considerar f + ı́nf f , que cumple f + ı́nf f ≥ 0.
Bajo ese supuesto, ser integrable equivale a que

ı́nf{S(f, P ) : P ∈ P[a, b]} = sup{I(f, P ) : P ∈ P[a, b]}.

⇐ La implicación en este sentido es inmediata. Por un lado, sabemos que

S(f, P )− I(f,Q) ≥ 0 ∀P,Q ∈ P[a, b].

La hipótesis anterior implica directamente que ı́nf{S(f, P )−I(f,Q) : P,Q ∈ P [a, b]} =
0, y basta considerar que

ı́nf{S(f, P )− I(f,Q) : P,Q ∈ P[a, b]}
= ı́nf{S(f, P ) : P ∈ P[a, b]} − sup{I(f,Q) : Q ∈ P[a, b]}.

⇒ Llamemos, por abreviar, α =
∫ b
a f(x)dx, y sea ε > 0. Por definición de supremo

e ínfimo, encontramos dos particiones P 1
ε y P 2

ε que cumplen

α− ε/2 ≤ I(f, P 1
ε ) ≤ α

α ≤ S(f, P 2
ε ) ≤ α+ ε/2.

Consideramos la partición Pε = P 1
ε ∪ P 2

ε , que refina a ambas. Por tanto

α− ε/2 ≤ I(f, P 1
ε ) ≤ I(f, Pε) ≤ α

α ≤ S(f, Pε) ≤ S(f, P 2
ε ) ≤ α+ ε/2,

de donde se sigue S(f, Pε)− I(f, Pε) < ε. ■
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La integral tiene las siguientes propiedades básicas:

Proposición 6.17. Sean f, g : [a, b]→ R funciones integrables Riemann en [a, b] y sean α, β ∈ R.
Entonces se verifican las siguientes propiedades:

(i) Linealidad. La función αf + βg es integrable en [a, b] y se cumple∫ b

a

(
αf(x) + βg(x)

)
dx = α

∫ b

a
f(x) dx+ β

∫ b

a
g(x) dx.

(ii) Conservación del orden. Si f(x) ≤ g(x) para todo x ∈ [a, b], entonces∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx.

En particular, si f es integrable en [a, b] y m ≤ f(x) ≤M para todo x ∈ [a, b], se tiene

m(b− a) ≤
∫ b

a
f(x) dx ≤M(b− a).

(iii) Integrabilidad del valor absoluto. Si f es integrable en [a, b], entonces también lo es |f |
y se verifica ∣∣∣∣∣

∫ b

a
f(x) dx

∣∣∣∣∣ ≤
∫ b

a
|f(x)| dx.

(iv) Aditividad respecto del intervalo. Si a < c < b, entonces f es integrable en [a, b] si, y
sólo si, es integrable en [a, c] y en [c, b], y en ese caso∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx.

Demostración

La demostración de (i) se basa en el simple hecho de que, para toda P ∈ P [a, b], se tiene
I(αf + βg, P ) = αI(f, P ) + βI(g, P ). De la misma manera, si f(x) ≤ g(x), entonces
I(f, P ) ≤ I(g, P ), lo que nos da inmediatamente (ii).
Probamos (iii). Si f es integrable, entonces lo son f+ y f− por definición, y usando (i)
también lo será |f | = f+ + f−. Además, sabemos que

− |f(x)| ≤ f(x) ≤ |f(x)| ∀x ∈ [a, b],
y podemos usar (ii) para concluir que

−
∫ b

a
|f(x)| dx ≤

∫ b

a
f(x)dx ≤

∫ b

a
|f(x)| dx =⇒

∣∣∣∣∣
∫ b

a
f(x)dx

∣∣∣∣∣ ≤
∫ b

a
|f(x)| dx.

Finalmente demostramos (iv). Con el fin de no sobrecargar innecesariamente la notación,
si tenemos [c, d] ⊂ [a, b] y P ∈ P[c, d], entonces entendemos que

σ(f, P ) = σ(f |[c,d], P ).

Supongamos que f es integrable en [a, c] y en [c, b] y sean c ∈ (a, b) y ε > 0. Sean
P1 ∈ P[a, c] y P2 ∈ P[c, b] particiones tales que

S(f, P1)− I(f, P1) < ε

2 , S(f, P2)− I(f, P2) < ε

2 .
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Entonces P1 ∪ P2 ∈ P[a, b] y se tiene

S(f, P1 ∪ P2)− I(f, P1 ∪ P2) = S(f, P1) + S(f, P2)− I(f, P1)− I(f, P2) < ε.

Por tanto, f es integrable en [a, b].

Recíprocamente, sea P ∈ P[a, b] tal que S(f, P ) − I(f, P ) < ε. Entonces, si P ′ =
P ∪ {c}, sabemos que la suma superior decrece y la inferior crece, luego también
S(f, P ′)− I(f, P ′) < ε. Como c es un punto de P ′, podemos escribir P ′ como unión de
particiones P1 ∈ P[a, c] y P2 ∈ P[c, b]. Tenemos entonces

ε > S(f, P ′)− I(f, P ′) = (S(f, P1)− I(f, P1))︸ ︷︷ ︸
≥0

+ (S(f, P2)− I(f, P2))︸ ︷︷ ︸
≥0

lo que nos da
S(f, P1)− I(f, P1) < ε, S(f, P2)− I(f, P2) < ε.

■

Nuestro objetivo ahora es discutir qué clase de funciones son integrables con esta noción de
área que hemos introducido.

Teorema 6.18. Sea f : [a, b] → R. Cada una de las siguientes hipótesis garantiza que f es
integrable Riemann en [a, b]:

(1) f es acotada en [a, b] y tiene un número finito de discontinuidades en [a, b]. En particular,
toda función continua en un intervalo cerrado y acotado es integrable en dicho intervalo.

(2) f es monótona en [a, b].

Demostración

En ambos casos, para cada ε > 0 construiremos una partición Pε de [a, b] tal que
S(f, Pε) − I(f, Pε) < ε. Por lo discutido en la demostración de la Proposición 6.16,
podemos suponer que f ≥ 0 en [a, b].

Caso (1) f acotada con un número finito de discontinuidades.
Supongamos primero que f es continua y positiva en [a, b]. Por el teorema de Heine, f
es uniformemente continua, así que dado ε > 0 existe δ > 0 tal que

|x− y| < δ =⇒ |f(x)− f(y)| < ε

b− a

para todos x, y ∈ [a, b]. Tomemos una partición Pε cuyos subintervalos tengan longitud
menor que δ. Como f es continua, el teorema de Weierstrass nos asegura que existen
sk, tk ∈ [xk−1, xk] tales que

Mk = f(sk), y mk = f(tk).

Como |tk − sk| < δ, la continuidad uniforme nos dice que

Mk −mk = f(sk)− f(tk) ≤ ε/(b− a),
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y por tanto

S(f, Pε)− I(f, Pε) =
n∑
k=1

(Mk −mk)(xk − xk−1) ≤ ε

b− a

n∑
k=1

(xk − xk−1) = ε.

Por el criterio anterior, f es integrable Riemann en [a, b].

Sea ahora f acotada y positiva en [a, b] y continua en (a, b). Tomamos [c, d] ⊂ [a, b] de
forma que

a− c < ε

3 sup f y b− d < ε

3 sup f .

Como f es integrable en [c, d] por ser continua, existe P ∈ P [a, b] con S(f, P )−I(f, P ) <
ε
3 . Sea Q = {a} ∪ P ∪ {b}. Se tiene

S(f,Q)− I(f,Q) ≤ (c− a) sup f + S(f, P ) + (b− d) sup f − I(f, P ) < ε.

Si tenemos un número finito de discontinuidades {d1, . . . , dn} ⊂ [a, b], aplicamos el
paso anterior a cada subintervalo donde f es continua salvo en los extremos, y usamos
la propiedad de aditividad de la integral.

Caso (2) f monótona en [a, b].
Supongamos que f es creciente (el caso decreciente es análogo). Sea ε > 0 y tomemos
una partición Pε de [a, b] cuya longitud máxima de subintervalo verifique

máx{xk − xk−1 : k ∈ {1, . . . , n}} < ε

f(b)− f(a) .

Como f es creciente, en cada subintervalo [xk−1, xk] se tiene

Mk = f(xk), mk = f(xk−1),

de modo que

S(f, Pε)− I(f, Pε) =
n∑
k=1

(
f(xk)− f(xk−1)

)
(xk − xk−1).

Acotando cada xk − xk−1 por la longitud máxima del subintervalo, obtenemos

S(f, Pε)−I(f, Pε) <
ε

f(b)− f(a)

n∑
k=1

(
f(xk)−f(xk−1)

)
= ε

f(b)− f(a) (f(b)−f(a)) = ε.

De nuevo, el criterio de integrabilidad da que f es integrable Riemann en [a, b]. ■

Ejemplo 6.19. Definimos f : [0, 1]→ R mediante

f(0) = 1, f(x) =
⌊1/x⌋∑
n=1

1
2n para x ∈ (0, 1],

Podemos ver que f es decreciente en [0, 1], ya que al aumentar x disminuye 1/x y, por tanto,
⌊1/x⌋ sólo puede disminuir, lo que hace decrecer la suma. Además, f tiene discontinuidades en
todos los puntos de la forma 1/(n + 1), n ∈ N. Hay, por tanto, infinitas discontinuidades en
[0, 1].
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Sin embargo, f es monótona y acotada, así que, por el teorema anterior, es integrable Riemann
en [0, 1]. La gráfica de la función tiene la forma de una escalera decreciente que se aproxima al
valor 1 cuando x→ 0+.

1
6
1
5

1
4

1
3

1
2

1

Llegados a este punto, podemos preguntarnos cómo usar la definición de integral para calcular,

en la práctica, el valor de
∫ b

a
f(x) dx. La idea intuitiva es que, cuanto mayor sea el número de

subintervalos de la partición y más pequeñas sean sus longitudes, mejor debería ser la aproxi-
mación obtenida mediante convenientes sumas de Riemann. Para formalizar esto introducimos
la siguiente noción.

Definición 6.20. Sea P = {a = x0 < x1 < · · · < xn = b} una partición de [a, b]. Llamamos
paso o anchura de la partición P al número

∆(P ) = máx{xk − xk−1 : k ∈ {1, . . . , n}}.

La siguiente afirmación justifica que, para funciones integrables, las sumas de Riemann asociadas
a particiones cada vez más finas convergen todas al mismo valor: la integral.

Teorema 6.21. Sea f : [a, b]→ R una función integrable y sea {Pm} una sucesión de particiones
de [a, b] tal que {∆(Pm)} → 0 cuando m→ +∞. Sea σ(f, Pm) cualquier suma de Riemann de
f para la partición Pm. Entonces

ĺım
m→∞

S(f, Pm) = ĺım
m→∞

σ(f, Pm) = ĺım
m→∞

I(f, Pm) =
∫ b

a
f(x) dx.

Demostración

La demostración de este resultado para una función integrable cualquiera es altamente
técnico y precisa de herramientas que se escapan a los objetivos de este curso. Por
ello, nos limitaremos a dar una demostración para el caso más sencillo en que f es una
función continua.

Sea Pm una sucesión de particiones de [a, b] con ∆Pm → 0. Dado ε > 0, el teorema de
Heine nos da un δ > 0 tal que si |x− y| < δ entonces |f(x)− f(y)| < ε

b−a . Puesto que
∆Pm → 0, tenemos un m0 ∈ N de forma que ∆Pm < δ para m ≥ 0.

Fijado m ≥ m0, si Pm = {a = x0 < . . . < xnm = b}, por el teorema de Weierstrass
existen tk y sk en [xk−1, xk] para k = 1, . . . , nm tales que

S(f, Pm)− I(f, Pm) ≤
nm∑
k=1
|f(sk)− f(tk)| |xk − xk−1| <

ε

b− a

nm∑
k=1

(xk − xk−1) = ε.

Esto demuestra que S(f, Pm)− I(f, Pm)→ 0.
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Ahora escribimos

0 ≤ S(f, Pm)−
∫ b

a
f(x)dx ≤ S(f, Pm)− I(f, Pm)→ 0,

0 ≤
∫ b

a
f(x)dx− I(f, Pm) ≤ S(f, Pm)− I(f, Pm)→ 0.

Por tanto,
∫ b
a f(x)dx← I(f, Pm) ≤ σ(f, Pm) ≤ S(f, Pm)→

∫ b
a f(x)dx. ■

Este resultado permite, en algunos casos concretos y con cierto ingenio, calcular integrales como
límite de sumas. Más adelante veremos métodos sistemáticos para calcular integrales; por ahora
es más útil interpretar el teorema en sentido contrario, como herramienta para determinar
límites de ciertas sucesiones. Un caso especialmente frecuente es el siguiente.

Corolario 6.22. Para toda función f integrable en [0, 1] se verifica

ĺım
n→∞

1
n

n∑
k=1

f

(
k

n

)
=
∫ 1

0
f(x) dx.

En efecto, basta considerar la partición Pn = {0, 1
n ,

2
n , . . . , 1}, cuyo paso es ∆(Pn) = 1/n→ 0, y

tomar en cada subintervalo [k−1
n , kn ] el punto tk = k

n .

Ejemplo

Problema. Calcular los siguientes límites:

(a) ĺım
n→+∞

n∑
k=1

1√
n(n+ k)

, (b) ĺım
n→+∞

n∑
k=1

(n− k) k
n3

Resolución.
(a) Para cada n ∈ N, llamamos

Sn =
n∑
k=1

1√
n(n+ k)

.

Reescribimos cada sumando:

1√
n(n+ k)

= 1√
n2(1 + k

n

) = 1

n
√

1 + k
n

.

Por tanto,

Sn = 1
n

n∑
k=1

1√
1 + k

n

= 1
n

n∑
k=1

f

(
k

n

)
, f(x) = 1√

1 + x
.

Observamos que f es continua en [0, 1] y que Sn es la suma de Riemann asociada
a la partición uniforme de [0, 1] con nodos tk = k/n. Luego,

ĺım
n→+∞

Sn =
∫ 1

0

1√
1 + x

dx =
[

2
√

1 + x
]1

0
= 2
√

2− 2.
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(b) Consideramos ahora

Sn =
n∑
k=1

(n− k) k
n3 .

Escribimos cada sumando como

(n− k) k
n3 = 1

n

(
1− k

n

)k
n
,

de modo que

Sn = 1
n

n∑
k=1

(
1− k

n

)k
n

= 1
n

n∑
k=1

f

(
k

n

)
, f(x) = (1− x)x.

De nuevo, f es continua en [0, 1] y Sn es la suma de Riemann asociada a la partición
uniforme con puntos tk = k/n, por lo que

ĺım
n→+∞

Sn =
∫ 1

0
(1− x)x dx =

∫ 1

0
(x− x2) dx =

[x2

2 −
x3

3
]1

0
= 1

2 −
1
3 = 1

6 .

Finalmente, damos respuesta a la pregunta que nos hicimos al principio de este capítulo.

Ejemplo

La función f : [0, 1]→ R dada por

f(x) =
{

2 si x ∈ R \Q,
1 si x ∈ Q,

no es integrable. Por tanto, la región asociada R(f ; 0, 1) no tiene área (en el sentido de
Riemann).
Resolución. Consideramos la sucesión de particiones de [0, 1], Pn, dada por xk = k

n
para k = 0, 1, . . . , n, que claramente verifica xk − xk−1 = 1

n , luego ∆Pn → 0.

Construimos dos sumas de Riemann distintas, σ1 y σ2, eligiendo respectivamente puntos
tk ∈ [xk−1, xk] todos racionales y todos irracionales. Si f fuese integrable, el resultado
anterior nos diría que σ1(f, Pn) y σ2(f, Pn) convergen ambas a

∫ 1
0 f(x)dx. Sin embargo,

vemos que

σ1(f, Pn) =
n∑
k=1

f(tk)
n

= 1
n

n∑
k=1

1 = 1,

σ2(f, Pn) =
n∑
k=1

f(tk)
n

= 1
n

n∑
k=1

2 = 2.

6.3 El Teorema Fundamental del Cálculo
Sea f : [a, b]→ R una función integrable. Dado x ∈ (a, b), la aditividad de la integral nos dice
que f es integrable en [a, x], lo que nos permite construir una nueva función que indica el área
(con signo) acumulada hasta x, esto es, x 7→

∫ x
a f(t)dt.

A veces será preciso necesario medir el área acumulada desde un punto c ∈ (a, b), lo que hace
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necesario dar sentido a qué entendemos por
∫ x
c f(t)dt cuando x ≤ c. Para hacer esto, recordamos

que la aditividad de la integral nos da, para cualesquiera x < y < z ∈ [a, b] :∫ z

x
f(t)dt =

∫ y

x
f(t)dt+

∫ z

y
f(t)dt.

Lo natural es buscar una convención que haga que esta identidad siga siendo cierta cualesquiera
sean los órdenes de x, y, z. Si tomamos x = y vemos que∫ x

x
f(t)dt = 0, (C1)

y entonces, si x = z, ∫ y

x
f(t)dt = −

∫ x

y
f(t)dt = 0. (C2)

Adoptamos pues las convenciones (C1) y (C2) de ahora en adelante, lo que hace buena la
siguiente definición.

Definición 6.23. Sea f : [a, b]→ R una función integrable y c ∈ [a, b]. La función área de f en
[a, b] con origen en c es la función F : [a, b]→ R dada por

F (x) =
∫ x

c
f(t) dt, x ∈ [a, b].

Aquí la variable de F , x, aparece como límite superior de la integral, lo que nos obliga a usar
otra variable, t, para el integrando. Por construcción,

F (x) = área(R(f+; c, x))− área(R(f−; c, x)),

teniendo siempre en cuenta el posible cambio de signo que nos dan las convenciones adoptadas
anteriormente.

Nuestro próximo objetivo es invertir el proceso que acabamos de hacer. Conocida la función de
área F (x), ¿es posible recuperar f(x)? La respuesta a esta pregunta la da uno de los resultados
más importantes del análisis matemático, y que relaciona conceptos a priori lejanos como son
el área bajo una curva y la pendiente de la recta tangente a esta.

Teorema 6.24 (Teorema Fundamental del Cálculo). Sea f : [a, b]→ R una función integrable
y definamos

F (x) =
∫ x

a
f(t) dt, x ∈ [a, b].

Entonces se verifica:

(1) F es continua en [a, b].

(2) En todo punto y ∈ [a, b] en el que f sea continua, F es derivable y

F ′(y) = f(y).

En particular, si f es continua en [a, b], entonces F es derivable en (a, b) y F ′(x) = f(x)
para todo x ∈ [a, b].
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Demostración

Como f es integrable en [a, b], es una función acotada. Por tanto, existe M > 0 tal que
|f(x)| ≤M para todo x ∈ [a, b].

(1) Sean x, y ∈ [a, b] con x ≤ y. Entonces

|F (y)− F (x)| =
∣∣∣∣∫ y

a
f(t) dt−

∫ x

a
f(t) dt

∣∣∣∣ =
∣∣∣∣∫ y

x
f(t) dt,

∣∣∣∣
≤
∫ y

x
|f(t)| dt ≤M(y − x).

Si x ≥ y, entonces será |F (x)− F (y)| ≤M(x− y). En ambos casos tenemos

|F (y)− F (x)| ≤M |y − x| ,

luego F es Lipschitziana en [a, b] y por tanto continua.

(2) Sea ahora c ∈ [a, b] un punto en el que f sea continua. Para x ̸= c escribimos

F (x)− F (c)
x− c

− f(c) = 1
x− c

∫ x

c
f(t) dt− f(c) = 1

x− c

∫ x

c

(
f(t)− f(c)

)
dt.

Dado ε > 0, por la continuidad de f en c existe δ > 0 tal que, si t ∈ [a, b] verifica
|t − c| < δ, entonces |f(t) − f(c)| < ε. Tomemos x ∈ [a, b] con 0 < |x − c| < δ. Para
todo t comprendido entre c y x se tiene |t− c| ≤ |x− c| < δ, luego |f(t)− f(c)| < ε, y
por tanto∣∣∣∣ 1

x− c

∫ x

c

(
f(t)− f(c)

)
dt

∣∣∣∣ ≤ 1
|x− c|

∫ x

c
|f(t)− f(c)| dt ≤ 1

|x− c|

∫ x

c
ε dt = ε.

Hemos probado que, para todo x ∈ [a, b] con 0 < |x− c| < δ, se cumple∣∣∣∣F (x)− F (c)
x− c

− f(c)
∣∣∣∣ ≤ ε.

Esto demuestra que
ĺım
x→c

F (x)− F (c)
x− c

= f(c),

es decir, F es derivable en c y F ′(c) = f(c). ■

Definición 6.25. Sea I un intervalo no trivial y H,h : I → R dos funciones. Decimos que H es
una primitiva de h si H ∈ D(I) y H ′(x) = h(x) para todo x ∈ I.

No todas las funciones admiten primitivas en un intervalo dado. Por ejemplo, una condición
necesaria para que una función admita primitivas es que tenga la propiedad del valor intermedio,
ya que las funciones derivadas la verifican. De hecho, se tiene la siguiente cadena de implicaciones.

Proposición 6.26. Dada una función f : I → R, donde I es un intervalo no trivial, consideremos
las siguientes afirmaciones:

(i) f es continua en I.

(ii) f admite una primitiva en I.

(iii) f tiene la propiedad del valor intermedio en I.
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Se verifica que
(i) =⇒ (ii) =⇒ (iii).

■

La implicación (i) ⇒ (ii) es el Teorema fundamental del cálculo, y (ii) ⇒ (iii) lo habíamos
visto como el Teorema de Darboux. Por tanto, hemos encontrado una demostración alternativa
para (i)⇒ (iii), que es el teorema del valor intermedio para funciones continuas.

En vista de la discusión anterior, uno podría preguntarse si toda función que admita una
primitiva en un intervalo [a, b] será integrable en el sentido de Riemann. Por sorprendente que
pueda parecer, la respuesta es negativa.

Ejemplo

Sea F : [−1, 1] → R dada por F (x) = x2 sin
(

1
x3

)
para x ̸= 0 y F (0) = 0. Una

comprobación rutinaria nos dice que F ∈ D[−1, 1] con

F ′(x) = f(x) =
{

2x sin
(

1
x3

)
− 3

x3 cos
(

1
x3

)
si x ̸= 0,

0 si x = 0.

La función f admite una primitiva en [−1, 1], a saber, F , pero f no es integrable
Riemann en [−1, 1] por no estar acotada.

-1.0 -0.5 0.5 1.0

-1000

-500

500

1000

Proposición 6.27. Sea I un intervalo no trivial y h : I → R una función que admite dos
primitivas H1, H2 : I → R. Entonces existe una constante C ∈ R tal que

H1(x)−H2(x) = C para todo x ∈ I.
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Demostración

Consideremos la función φ : I → R dada por

φ(x) = H1(x)−H2(x).

Como H1 y H2 son derivables en I◦ y H ′
1(x) = H ′

2(x) = h(x) para todo x ∈ I◦, se tiene

φ′(x) = H ′
1(x)−H ′

2(x) = 0 para todo x ∈ I◦.

Por el teorema del valor medio, φ es constante en I. Tomando, por ejemplo, x0 ∈ I y
escribiendo C = φ(x0), obtenemos

H1(x)−H2(x) = φ(x) = C ∀x ∈ I,

que es lo que queríamos. ■

Ejercicio: Razona si es verdadera o falsa la siguiente afirmación: toda primitiva de
una función continua f : [a, b]→ R puede escribirse como una función de área de f .

Notación: La integral indefinida.

Sea I un intervalo no trivial y f : I → R una función continua. Definimos la integral
indefinida de f como el conjunto de todas sus primitivas en I.∫

f(x)dx = {F : I → R : F es una primitiva de f}.

Si F es una primitiva cualquiera de F , en vista del resultado anterior se prefiere la
notación ∫

f(x)dx = F (x) + C.

Teorema 6.28 (Regla de Barrow). Sea f : [a, b]→ R integrable y supongamos que F : [a, b]→ R
es una primitiva de f en [a, b]. Entonces∫ b

a
f(t) dt = F (b)− F (a).

Demostración

Sea Pm = {a = x0 < x
(m)
1 < · · · < x

(m)
nm−1 < xnm = b} una sucesión de particiones

de [a, b] con ∆Pm → 0. Aplicando el teorema del valor medio a F en cada intervalo
[x(m)
k−1, x

(m)
k ] obtenemos una sucesión de puntos t(m)

k ∈ (x(m)
k−1, x

(m)
k ) tal que

F (x(m)
k )− F (x(m)

k−1) = F ′(t(m)
k )(x(m)

k − x(m)
k−1) = f(t(m)

k )(x(m)
k − x(m)

k−1).
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Sumando estas igualdades para k = 1, . . . , nm llegamos a

F (b)− F (a) =
nm∑
k=1

(
F (x(m)

k )− F (x(m)
k−1)

)
=

nm∑
k=1

f(t(m)
k )(x(m)

k − x(m)
k−1) = σ(f, Pm),

donde σ(f, Pm) es una suma de Riemann de f asociada a la partición P .
Por el teorema de convergencia de las sumas integrales, sabemos que

ĺım
m→∞

σ(f, Pm) =
∫ b

a
f(t) dt.

Pasando al límite en la igualdad F (b)− F (a) = σ(f, Pm) obtenemos

F (b)− F (a) =
∫ b

a
f(t) dt,

que es la fórmula deseada. ■

Corolario 6.29 (Fórmula de cambio de variable). Sean f ∈ C[a, b] y φ ∈ C1(J), donde J es
un intervalo no trivial verificando que φ(J) ⊂ I y que existen α, β ∈ J tales que a = φ(α) y
b = φ(β). Entonces ∫ b

a
f(x) dx =

∫ β

α
f
(
φ(t)

)
φ′(t) dt.

Demostración

Sea F una primitiva de f en I, que existe por el teorema fundamental del cálculo. Por
la regla de la cadena, la composición F ◦φ es una primitiva de la función (f ◦φ)φ′ en J ,
que es continua en dicho intervalo. Aplicando dos veces la regla de Barrow obtenemos∫ b

a
f(x) dx = F (b)− F (a) = (F ◦ φ)(β)− (F ◦ φ)(α) =

∫ β

α
f
(
φ(t)

)
φ′(t) dt.

■

Obsérvese que la notación de la fórmula recuerda de forma muy cómoda el procedimiento de
cambio de variable: pensamos que la igualdad anterior se obtiene al sustituir la variable de
integración x por una nueva variable t, ligada por la igualdad x = φ(t). En la práctica se suele
decir que hemos hecho la sustitución x = φ(t). Además de reemplazar f(x) por f(φ(t)), también
resulta natural sustituir dx por φ′(t) dt. Finalmente, el cambio en el intervalo de integración se
refleja en los extremos: basta tener en cuenta que x = a equivale a t = α y x = b equivale a
t = β.

Corolario 6.30 (Fórmula de integración por partes). Sean u, v ∈ C1[a, b]. Entonces∫ b

a
u(x) v′(x) dx =

[
u(x)v(x)

]b
a
−
∫ b

a
v(x)u′(x) dx.
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Demostración

La función producto uv es una primitiva de u′v + vu′ en [a, b]. Aplicando la regla de
Barrow a u′v + vu′ en el intervalo [a, b] obtenemos∫ b

a

(
u′(x)v(x) + u(x)v′(x)

)
dx =

[
u(x)v(x)

]b
a
.

Usando la linealidad de la integral en el miembro izquierdo se llega a∫ b

a
u′(x)v(x) dx+

∫ b

a
u(x)v′(x) dx =

[
u(x)v(x)

]b
a
,

y despejando
∫ b

a
u(x)v′(x) dx obtenemos la igualdad buscada. ■

6.4 Logaritmos y exponenciales
Usando los resultados principales del Cálculo Diferencial e Integral podemos introducir con
comodidad nuevas funciones reales de variable real, que, junto con las funciones racionales, forman
la colección de funciones elementales. Nos centraremos aquí en dos familias: las relacionadas
con potencias de base y exponente reales y las funciones trigonométricas.

Siguiendo un orden que quizá no sea el más intuitivo, pero sí el más práctico, empezaremos
por la función logaritmo, cuya definición es especialmente sencilla en términos de integrales. El
Teorema Fundamental del Cálculo nos dará enseguida su derivada y, a partir de ella, podremos
obtener sus propiedades básicas por medio del teorema del valor medio.

La función t 7→ 1/t es continua en R+, luego admite una función de área con origen en 1. Esa
integral es la que nos interesa ahora.

Definición 6.31. Para cada x ∈ R+ definimos

log x =
∫ x

1

dt

t
.

Al número log x lo llamamos logaritmo de x y a la aplicación log : R+ → R, que a cada x > 0
hace corresponder log x, la llamamos función logaritmo.

x

y

y = 1
x

1 x

log x

Proposición 6.32. El logaritmo es la única función f ∈ D(R+) que verifica

f(1) = 0 y f ′(x) = 1
x

para todo x ∈ R+.

En particular, log es estrictamente creciente en R+.
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Demostración

Por el Teorema Fundamental del Cálculo tenemos log′(x) = 1/x para todo x ∈ R+ y
log 1 = 0. Además, si f es otra función verificando las mismas condiciones, entonces
la función g = f − log tiene derivada nula en R+, luego es constante. Como g(1) = 0,
obtenemos g ≡ 0 y f = log.

El crecimiento estricto de log se deduce del teorema del valor medio, pues log′(x) > 0
para todo x > 0. ■

La siguiente propiedad es la más característica del logaritmo.

Proposición 6.33. Para todos x, y ∈ R+ se verifica

log(xy) = log x+ log y.

Como consecuencias inmediatas se tiene:

(1) log(x/y) = log x− log y para todos x, y ∈ R+.

(2) log(xn) = n log x para todo x ∈ R+ y todo n ∈ N.

(3) log e = 1, donde e = ĺımn→+∞
(
1 + 1

n

)n
.

Demostración

Usaremos la aditividad de la integral y la fórmula de cambio de variable. Para x, y ∈ R+

tenemos
log(xy) =

∫ xy

1

dt

t
=
∫ x

1

dt

t
+
∫ xy

x

dt

t
.

En la segunda integral hacemos el cambio t = xs, dt = x ds:∫ xy

x

dt

t
=
∫ y

1

x ds

xs
=
∫ y

1

ds

s
= log y.

Por tanto log(xy) = log x+ log y, como queríamos.

Para (1) basta escribir log x = log
(
(x/y)y

)
= log(x/y) + log y y despejar.

La igualdad (2) se demuestra por inducción en n ∈ N: el caso n = 1 es trivial y, si vale
para cierto n, entonces

log(xn+1) = log(xnx) = log(xn) + log x = n log x+ log x = (n+ 1) log x.

Para (3), usamos la continuidad del logaritmo en el punto e y su derivabilidad en 1
para escribir

log e = ĺım
n→∞

n log
(
1 + 1

n

)
= ĺım

n→∞

log
(
1 + 1

n

)
− log 1(

1 + 1
n

)
− 1

= log′(1) = 1.

■

Proposición 6.34. La función logaritmo diverge positivamente en +∞ y negativamente en 0.
En consecuencia, su imagen es todo R y log : R+ → R es biyectiva.
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Demostración

Dado m ∈ N, para x > em se tiene

log x > log(em) = m log e = m,

luego log x→ +∞ cuando x→ +∞. En el origen,

log x = − log(1/x) −→ −∞ (x→ 0+).

Por tanto, la imagen de log es un intervalo sin cota superior ni inferior, y necesariamente
coincide con R. ■

Definición 6.35. La inversa del logaritmo es la función exponencial, que denotaremos por

exp = log−1 : R −→ R+.

Para cada x ∈ R escribimos expx para el único y > 0 tal que log y = x. Equivalentemente,

exp(log y) = y ∀ y ∈ R+, log(expx) = x ∀x ∈ R.

En particular, exp 0 = 1 y exp 1 = e.

Proposición 6.36. La función exponencial es derivable en R y coincide con su derivada:

exp′(x) = expx > 0 para todo x ∈ R.

En particular, exp es estrictamente creciente.

Demostración

Como log′(x) ̸= 0 para todo x ∈ R+, el teorema de la función inversa nos dice que la
inversa del log es derivable en R y además

exp′(x) = 1
log′(expx) = 1

1/ expx = expx > 0

para todo x ∈ R. ■

La propiedad fundamental de la exponencial es la siguiente.

Proposición 6.37. Para todos x, y ∈ R se verifica

exp(x+ y) = expx exp y.

Como consecuencias obtenemos:

(1) exp(x− y) = expx/ exp y para todos x, y ∈ R.

(2) exp(nx) = (expx)n para todo x ∈ R y todo n ∈ N.
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Demostración

Fijamos y ∈ R y consideramos la función

h : R→ R, h(x) = exp(x+ y)
expx .

Está claro que h ∈ D(R) y se comprueba inmediatamente que h′(x) = 0 para todo
x ∈ R. Por tanto h es constante y h(x) = h(0) = exp y para todo x ∈ R, lo que equivale
a exp(x+ y) = expx exp y.

Las consecuencias se obtienen a partir de la fórmula de adición de manera inmediata. ■

Proposición 6.38. Se verifica

ĺım
x→−∞

expx = 0, ĺım
x→+∞

expx = +∞.

Demostración

Estas propiedades pueden obtenerse directamente a partir del comportamiento asin-
tótico del logaritmo, ya que la función exponencial es su inversa. Alternativamente,
pueden demostrarse directamente de la siguiente manera:

Como {en}n∈N → +∞, dado K ∈ R podemos encontrar m ∈ N tal que em > K. Para
x > m se tiene

expx > expm = (exp 1)m = em > K,

luego expx→ +∞ cuando x→ +∞. Por otra parte,

0 = ĺım
x→+∞

1
expx = ĺım

x→+∞
exp(−x) = ĺım

x→−∞
expx,

lo que da el límite en −∞. ■

x

y

y = log x

10
x

y y = expx

1

0

Las propiedades anteriores permiten extender la definición de las potencias a exponentes reales.
Empezamos con una observación sencilla: si m ∈ N, entonces

log x = log(( m
√
x)m) = m log m

√
x =⇒ log m

√
x = 1

m
log x.
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Por tanto, dados a ∈ R+ y q ∈ Q, sabemos ya que

aq = exp(log(aq)) = exp(q log a).

En el segundo miembro nada impide sustituir q por un número real cualquiera y escribir:

Definición 6.39. Para a ∈ R+ y b ∈ R definimos

ab = exp(b log a).

Según tomemos a o b como variable, obtendremos dos familias de funciones.

Definición 6.40. Fijado a ∈ R+, la exponencial de base a es la función

expa : R→ R+, expa x = ax = exp(x log a).

Observamos que exp1 x = 1 para todo x ∈ R, por lo que el caso a = 1 carece de interés. También
se cumple

expe x = ex = expx para todo x ∈ R,

de modo que la exponencial de base e es la función exponencial por antonomasia; todas las
demás se obtienen a partir de ella.

Definición 6.41. Fijado a ∈ R+ \ {1}, la inversa de la exponencial de base a es el logaritmo en
base a, que denotamos por loga. Tenemos

aloga y = y ∀ y ∈ R+, loga(ax) = x ∀x ∈ R.

Para todo x > 0 vemos inmediatamente que

x = aloga x = elog a loga x =⇒ log x = log a loga x.

Esta es la conocida como fórmula de cambio de base de los logaritmos:

loga x = log x
log a para todo x ∈ R+.

La fórmula anterior permite deducir todas las propiedades de la función loga x a partir de las de
la función log, así que no nos detendremos a detallarlas. Merece la pena, no obstante, señalar la
extensión de la fórmula de adición para el loga:

Proposición 6.42. Para todo a ∈ R+ \ {1}, todo x > 0 y todo y ∈ R se tiene:

loga(xy) = y loga x.

Demostración

Es un cálculo directo:

loga(xy) = log(exp(y log x))
log a = y log x

log a = y loga x.

■
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x

y

10

a > 1

0 < a < 1

y = loga x

x

y

1

0

a > 10 < a < 1

y = ax

Pasamos ahora a estudiar las funciones que se obtienen al considerar potencias con base variable
y exponente constante. Fijado α ∈ R, llamamos función potencia de exponente α a

x 7−→ xα,

entendida como una función definida en R+.

En algunos casos, esta función no es nueva y puede ser definida en un subconjunto de
R más grande que R+. Estos casos son:

Si α = n ∈ N, se trata de la restricción a R+ de una función polinómica conocida;
para α = 0 es una función constante.

Si α = −n con n ∈ N, entonces x−n = 1/xn para todo x ∈ R+ y obtenemos una
función racional conocida. En realidad x−n = 1/xn tiene sentido también para
x ∈ R∗ y podemos verla como función definida en R∗.
Si α = 1/q con q ∈ N, la identidad

x1/q = q
√
x para todo x ∈ R+

nos dice que la potencia de exponente 1/q coincide con la función raíz q-ésima
(definida previamente y continua en R+

0 , e incluso en todo R cuando q es impar).

Si α = p/q con p ∈ Z y q ∈ N, de las propiedades anteriores se deduce que

xp/q =
(

q
√
x
)p para todo x ∈ R+,

luego la potencia de exponente racional p/q se obtiene como composición de
funciones conocidas.

El caso realmente nuevo aparece cuando α ∈ R \Q. Las propiedades básicas de esta función se
deducen de las de la exponencial y el logaritmo y no merece la pena detenernos.

Definición 6.43. Fijado α ∈ R, la potencia de exponente α es la función fα : R+ → R+ dada
por

fα(x) = exp(α log x) = xα para todo x ∈ R+.

Cuando α ∈ Q, esta función es la restricción a R+ de funciones polinómicas, racionales y
radicales ya conocidas.
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Estas nuevas potencias que acabamos de construir se derivan igual que las que ya conocíamos.

Proposición 6.44. Dado α ∈ R, la potencia x 7→ xα es derivable en R+ con (xα)′ = αxα−1.

Demostración

La derivabilidad de la potencia es consecuencia de la regla de la cadena, ya que exp y
log son funciones derivables. Además

(xα)′ = exp′(α log x) log′ x α = αxα
1
x

= αxα−1.

■

Concluimos esta parte de propiedades del logaritmo y la exponencial probando su analiticidad.
Empezamos por la exponencial.

Proposición 6.45. La función exp es analítica en R y

ex =
+∞∑
k=0

ea

n! (x− a)n ∀x, a ∈ R.

Demostración

Sabemos que exp ∈ D(R) y exp′ = exp, luego exp ∈ C∞(R). Además, dado cualquier
a ∈ R, exp(n)(a) = ea para todo n ∈ N, luego

Tn[exp, a](x) =
n∑
k=0

ea

n! (x− a)n.

Por la fórmula de Taylor, para cada n ∈ N existe un cn entre x y a tal que

ex −
n∑
k=0

ea

n! (x− a)n = ecn(x− a)n+1

(n+ 1)! .

Usando que exp es una función creciente, la fórmula de adición y el hecho que cn ≤
|a|+ |x|, se tiene∣∣∣∣∣ex −

n∑
k=0

ea

n! (x− a)n
∣∣∣∣∣ ≤ e|a|e|x|(x− a)n+1

(n+ 1)! → 0 (n→ +∞),

luego la serie de Taylor es convergente y converge a ex para todo x, a ∈ R. ■

Proposición 6.46. La función log es analítica en R+. Además, dado a ∈ R+, para todo
x ∈ (0, 2a) se verifica

log x = log a+
∞∑
n=1

(−1)n+1

nan
(x− a)n.
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Demostración

Sabemos que log ∈ D(R+) con log′(x) = 1
x . Como log′(x) es una función racional cuyo

denominador nunca se anula en R+, es C∞(R+), y por tanto también lo es el logaritmo.
Para empezar, tenemos que calcular las infinitas derivadas de log en un punto a ∈ R+.
Para simplificar la tarea, consideramos en su lugar la función log(1 + x) y calcularemos
sus polinomios de Taylor en a = 0, para luego usar las propiedades del logaritmo.
Sea pues la función f : (−1,+∞) dada por f(x) = log(1 + x), y sea φ(t) = f ′(t) = 1

1+t ,
definida para t ∈ (−1,+∞). Dado n ∈ N, de la fórmula de las sumas parciales de la
serie geométrica se obtiene, para todo t > −1,

n−1∑
k=0

(−t)k =
n−1∑
k=0

(−1)ktk = 1− (−t)n

1 + t
,

y por tanto
1

1 + t
=

n−1∑
k=0

(−1)ktk︸ ︷︷ ︸
Tn−1[φ,0](t)

+(−1)ntn

1 + t
. (6.3)

Hemos obtenido así los polinomios de Taylor de orden n− 1 de φ en a = 0, ya que

ĺım
t→0

1
tn−1

(
1

1 + t
−
n−1∑
k=0

(−1)ktk
)

= ĺım
t→0

(−1)nt
1 + t

= 0,

y Tn−1[φ, 0](x) es el único polinomio que cumple dicha condición, según el teorema del
resto de Taylor. Ahora, integramos la identidad (6.3), usando linealidad de la integral
y la regla de Barrow:

log(1 + x) =
∫ x

0

dt

1 + t

=
n−1∑
k=0

(−1)k
∫ x

0
tk dt+

∫ x

0

(−1)ntn

1 + t
dt

=
n∑
k=1

(−1)k+1x
k

k
+
∫ x

0

(−1)ntn

1 + t
dt.

Luego

log(1 + x)−
n∑
k=1

(−1)k+1x
k

k
=
∫ x

0

(−1)ntn

1 + t
dt.

Lo que hemos hecho en el paso anterior es escribir el resto de Taylor Rn[log(1+x), 0](x)
en forma integral, o como resto de Cauchy. La serie∑

n≥1

(−1)n+1xn

n

converge si y solo si |x| ≤ 1, así que debemos restringirnos a x ∈ (−1, 1]. Vamos a ver
que, si x ∈ (−1, 1], dicho resto tiende a 0 cuando n→∞.

Caso 0 ≤ x ≤ 1 Para t ∈ [0, x] se tiene 1 + t ≥ 1, así que∣∣∣∣∫ x

0

(−1)ntn

1 + t
dt

∣∣∣∣ ≤ ∫ x

0

tn

1 + t
dt ≤

∫ x

0
tn dt = xn+1

n+ 1 −−−→n→∞
0.
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Caso −1 < x < 0 Para t ∈ [x, 0] se cumple |t| ≤ |x| < 1 y 1 + t ≥ 1 + x > 0, de
modo que ∣∣∣∣ tn

1 + t

∣∣∣∣ ≤ |x|n1 + x
.

Entonces, ∣∣∣∣∫ x

0

(−1)ntn

1 + t
dt

∣∣∣∣ ≤ ∫ 0

x

|t|n

1 + t
dt ≤ |x|

n

1 + x

∫ 0

x
dt = |x|

n+1

1 + x
−−−→
n→∞

0.

Concluimos que, para todo x ∈ (−1, 1],

log(1 + x) =
∞∑
k=1

(−1)k+1x
k

k
.

Para obtener el desarrollo alrededor de un a ∈ R+ cualquiera, escribimos

x = a
(
1 + u

)
, u = x− a

a
.

Si x ∈ (0, 2a] entonces u ∈ (−1, 1] y, aplicando la fórmula anterior a u, tenemos

log x = log a+ log(1 + u)

= log a+
∞∑
n=1

(−1)n+1u
n

n
= log a+

∞∑
n=1

(−1)n+1

nan
(x− a)n,

que es la identidad buscada. ■

Como consecuencia inmediata, tomando a = 1 y x = 2 obtenemos la suma de la serie
armónica alternada.

log 2 = log(1 + 1) =
∞∑
n=1

(−1)n+1

n
.

Tanto la exponencial como el logaritmo como las potencias de exponente positivo son funciones
que divergen a +∞ en +∞, por lo que cabe preguntarse qué ocurre con la indeterminación del
tipo [∞/∞] que producen sus cocientes. El caso de dos potencias es sencillo, pues xa

xb = xa−b.
El siguiente resultado da respuesta al resto de casos.

Proposición 6.47 (Escala de infinitos). Sea ρ ∈ R+. Entonces se verifican los límites

ĺım
x→+∞

log x
xρ

= 0, ĺım
x→+∞

xρ

ex
= 0.

Demostración

Esta demostración no se vio en clase.

Las funciones involucradas en los límites anteriores son C∞ en sus respectivos dominios
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de definición, lo que nos permite considerar los cocientes de las derivadas tantas veces
como sea necesario.

Si derivamos el numerador y el denominador del primer límite, tenemos:

log′ x

(xρ)′ = 1
ρ xρ

→ 0 (x→ +∞).

En el segundo límite volvemos a encontrar una indeterminación del tipo [∞/∞] hasta
que derivamos ⌊ρ⌋+ 1 veces.

(xρ)(⌊ρ⌋)

exp(⌊ρ⌋)(x)
=

⌊ρ⌋∏
k=0

(ρ− k)

x⌊ρ⌋+1−ρ ex
→ 0 (x→ +∞).

El resultado que queríamos se sigue de la regla de L’Hôpital. ■

El resultado anterior se conoce como escala de infinitos: entre las funciones que divergen
positivamente en +∞, cualquier potencia xρ con ρ > 0 domina al logaritmo, y la exponencial
ex domina a todas las potencias.

Ejemplo

Problema. Calcular los límites

ĺım
x→+∞

x1/x y ĺım
x→0+

xx.

Resolución. Para el primero, escribimos

x1/x = exp
( log x

x

)
.

El exponente tiende a 0 por la escala de infinitos (caso ρ = 1), luego

ĺım
x→+∞

x1/x = exp(0) = 1.

Para el segundo, usamos
xx = exp(x log x).

Observamos que
x log x = log x

1/x .

Cuando x→ 0+, se tiene 1/x→ +∞, así que, poniendo t = 1/x,

x log x = − log t
t
.

De nuevo, por la escala de infinitos (caso ρ = 1), log t/t→ 0, luego x log x→ 0 y por
tanto

ĺım
x→0+

xx = exp(0) = 1.
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El criterio anterior nos permite resolver indeterminaciones del tipo [0 · ∞], [0/0] y [∞/∞] que
involucran a las funciones que acabamos de introducir. Damos a continuación uno muy útil
para afrontar las del tipo [1∞].

Proposición 6.48 (Criterio de equivalencia logarítmica). Sea {xn} una sucesión de números
reales positivos tal que xn → 1 y sea {yn} cualquier sucesión de números reales. Entonces:

(i) Para L ∈ R se tiene

ĺım
n→∞

yn(xn − 1) = L ⇐⇒ ĺım
n→∞

xyn
n = eL.

(ii) {yn(xn − 1)} → +∞ ⇐⇒ {xyn
n } → +∞.

(iii) {yn(xn − 1)} → −∞ ⇐⇒ {xyn
n } → 0.

Demostración

Recordamos primero que
ĺım
x→1

log x
x− 1 = log′(1) = 1.

Definimos la función φ : R+ → R mediante

φ(x) =


log x
x− 1 , x ̸= 1,

1, x = 1.

Por el límite anterior, φ es continua en 1, luego φ ∈ C(R+) y, en particular, φ(xn)→ 1
cuando n→∞. Además, φ(x) ̸= 0 para todo x ∈ R+.
Para cada n ∈ N tenemos la igualdad

yn log xn = yn(xn − 1)φ(xn),

que es obvia si xn ̸= 1, y también si xn = 1 pues entonces ambos lados son 0. De aquí se
deduce que las sucesiones {yn log xn} y {yn(xn − 1)} tienen el mismo comportamiento
cuando n→ +∞, ya que φ(xn)→ 1 y φ(xn) ̸= 0. ■

Ejemplo

Problema. Calcular

ĺım
x→0

(sin x
x

) 1
x2
.

Resolución. Por la definición de derivada,

ĺım
x→0

sin x
x

= sin′ 0 = 1.

Por tanto, tenemos una indeterminación del tipo [1∞]. Teniendo en cuenta el criterio
de equivalencia logarítmica, consideramos:

ĺım
x→0

1
x2

(sin x
x
− 1

)
= ĺım

x→0

sin x− x
x3 .
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Por el teorema de Taylor, sin x = x− x3

6 +R3[sin, 0](x). Por tanto

ĺım
x→0

sin x− x
x3 = ĺım

x→0

−x3

6 +R3[sin, 0](x)
x3 = −1

6 .

Finalmente,

ĺım
x→0

(sin x
x

) 1
x2

= e−1/6.

Ejercicios:
(1) Probar que

ĺım
n→∞

1
logn

n∑
k=1

1
k

= 1.

(2) Sea f ∈ D(R) tal que f ′(x) = αf(x) para todo x ∈ R, donde α ∈ R es una
constante. Probar que

f(x) = f(0) eαx para todo x ∈ R.

(3) Probar que xe ≤ ex para todo x ∈ R+. Probar también que la anterior desigualdad
caracteriza al número e, es decir, si a ∈ R+ verifica que xa ≤ ax para todo x ∈ R+,
entonces a = e.

(4) Estudiar el comportamiento en +∞ de las funciones φ,ψ : R+ → R definidas como
sigue, donde a ∈ R+ es una constante:

φ(x) = log(2 + aex)√
2 + ax2

, ψ(x) = (ax + x)1/x ∀x ∈ R+.

(5) Dados α, β ∈ R+, estudiar la convergencia de la serie de Bertrand∑
n≥3

1
nα(logn)β .

(6) Dado α ∈ R, estudiar la convergencia de las siguientes series:∑
n≥1

(
log(1 + 1/n)

)α
,

∑
n≥1

(
1− e−1/n)α.

(7) Dado α ∈ R, estudiar la derivabilidad de la función f : R→ R definida por

f(x) = 0 ∀x ∈ R−
0 , f(x) = xα ∀x ∈ R+.

(8) Se considera la función f : R+ \ {e} → R definida por

f(x) = x1/(log x−1) ∀x ∈ R+ \ {e}.

Estudiar el comportamiento de f en 0, e, +∞.
(9) Estudiar la convergencia de la sucesión{(

αa1/n + β b1/n

α+ β

)n}
,

donde α, β ∈ R, α+ β ̸= 0 y a, b ∈ R+.
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(10) Estudiar la derivabilidad de la función f : R+
0 → R dada por

f(x) = xx ∀x ∈ R+, f(0) = 1.

El siguiente ejercicio es extremadamente difícil y se propone como un
reto para los lectores más valientes:

(⋆) Sea f : R+ → R+ una función derivable en 1 y que verifica

f(f(x)) = x2 ∀x ∈ R+.

Probar que f es la potencia de exponente
√

2 o la de exponente −
√

2.

6.5 Funciones trigonométricas
Para definir de forma práctica y rigurosa las funciones trigonométricas, empezaremos por el
arco-seno, que es una función que aparece de manera natural al parametrizar la circunferencia
goniométrica, esto es, la circunferencia de radio 1 y centro (0, 0) de R2, cuya ecuación es

C = {(x, y) ∈ R2 : x2 + y2 = 1}.

x

y

x2 + y2 = 1

x
t = sin x

x = (
√

1− t2, t)

cosx

Para cada t ∈ [0, 1], marcamos el ángulo x(t) del primer cuadrante que tiene como ordenada t,
esto es (

√
1− t2, t). Como el radio de la circunferencia es uno, x(t) coincide con la medida del

ángulo x en radianes (véase la figura).

Aunque los conceptos de curva y parametrización no se introducirán hasta la asignatura de
Cálculo II, podemos convencernos, al menos geométricamente, de que el arco de circunferencia
que va desde (0, 1) hasta (

√
1− t2, t) puede recorrerse usando la función

γ :[0, t]→ R2

γ(s) =(
√

1− s2, s)

El módulo del vector velocidad de dicha parametrización viene dado por

∥∥γ′(s)
∥∥ =

√( −s√
1− s2

)2
+ 12 =

√
1

1− s2 = 1√
1− s2

.

Por tanto, la distancia recorrida hasta s = t, que es la longitud del arco considerado, vendrá
dada por

x(t) =
∫ t

0

ds√
1− s2

.
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Esta función de área será la pieza fundamental que nos ayudará a construir todas las funciones
trigonométricas. Así pues, olvidándonos momentáneamente de la motivación geométrica, hacemos
la siguiente definición.

Definición 6.49. Para cada x ∈ (−1, 1), definimos

arcsin(x) =
∫ x

0

dt√
1− t2

.

Haciendo el cambio de variable t = −s vemos sin dificultad que el arco-seno es una función impar.
Además, por el teorema fundamental del cálculo, τ es derivable en (−1, 1) con arcsin′(x) = 1√

1−x2 ,
por lo que es estrictamente creciente. Comenzamos viendo que arcsin puede extenderse de forma
continua a los puntos −1, 1.

Definición 6.50. El número π viene dado por

π = 4 arcsin
√

2
2 = 4

∫ √
2/2

0

dx√
1− x2

.

Proposición 6.51. Definiendo arcsin(1) = π/2 y arcsin(−1) = −π/2, el arco-seno es una
función continua en [−1, 1].

Demostración

Como arcsin es impar, basta con probar la primera identidad. Para esto, probemos
que, para todo x ∈ [0, 1),

arcsin(x) + arcsin(
√

1− x2) = π

2 . (6.4)

Usando una estrategia de sobra conocida, llamamos f(x) = arcsin(x) + arcsin(
√

1− x2)
para x ∈ [0, 1). Sabemos que f ∈ D[0, 1) con

f ′(x) = 1√
1− x2

− 1√
1− (1− x2)

· x√
1− x2

= 0.

Por el teorema del valor medio, f es constante, luego

f(x) = f(
√

2/2) = 2 arcsin(
√

2/2) = π

2 para todo x ∈ [0, 1).

Tomando límite cuando x→ 1 en (6.4), tenemos

ĺım
x→1

arcsin(x) = π

2 .

■

Para no introducir una nueva nomenclatura, seguimos llamando arcsin a la función que ahora
está definida y es continua en [−1, 1]. Por el teorema del valor medio arcsin es estrictamente
creciente en [−1, 1], por lo tanto es inyectiva y su imagen no es otra que [−π

2 ,
π
2 ]. Por supuesto,

el siguiente paso natural es considerar su inversa.

Definición 6.52. Para cada y ∈ [−π
2 ,

π
2 ], definimos la función

S(y) = arcsin−1(y),

es decir S(y) es el único valor en [−1, 1] tal que arcsin(S(y)) = y.
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Proposición 6.53. Definimos la función C : [−π
2 ,

π
2 ]→ R como C(x) =

√
1− S(x)2. Se tiene

que S,C ∈ D[−π
2 ,

π
2 ] con S′(x) = C(x) y C ′(x) = −S(x).

x

y

x2 + y2 = 1

x

cosx

Nótese que hemos definido el coseno de los ángulos entre −π/2 y π/2 mediante el teorema de
Pitágoras.

Demostración

Como arcsin es continua e inyectiva en un intervalo, la función S es continua en [−π
2 ,

π
2 ].

Además, es derivable en (−π
2 ,

π
2 ) con

S′(x) = 1
arcsin′(S(x)) =

√
1− S(x)2 = C(x).

Por su parte, la función C(x) es continua en [−π
2 ,

π
2 ], lo que nos da la derivabilidad de

S en los extremos, y
C ′(x) = −S(x)C(x)√

1− S(x)2 = −S(x),

así que también es derivable en todo [−π
2 ,

π
2 ], ya que su derivada tiene límite en dichos

puntos. ■

Las funciones S y C son lo que todos estamos pensando: las restricciones del seno y el coseno al
intervalo [−π

2 ,
π
2 ].

x

y

−1 1

π
2

−π
2

y = arcsin x

x

y

−π
2

π
2

1

−1

y = S(x)
y = C(x)

Ahora, pretendemos extender las funciones S y C a todo R. Para esto, nos preocupamos primero
de cómo extenderlas al intervalo [−π, π], y luego las repetiremos en cada intervalo de longitud
2π.
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Definición 6.54. Se definen las extensiones de S y C al intervalo [−π, π] como

S(x) = C

(
x− π

2

)
si x ∈ [π2 , π], S(x) = −C

(
x+ π

2

)
si x ∈ [−π,−π2 ],

C(x) = −S
(
x− π

2

)
si x ∈ [π2 , π], C(x) = S

(
x+ π

2

)
si x ∈ [−π,−π2 ],

x

y

−π −π2
π

2
π

1

−1

y = sin x
y = cosx

Proposición 6.55. Con las definiciones anteriores, las funciones S,C : [−π, π]→ R verifican
las siguientes propiedades:

(i) S,C ∈ D[−π, π] con S′(x) = C(x) y C ′(x) = −S(x) para todo x ∈ [−π, π],

(ii) S(x)2 + C(x)2 = 1 para todo x ∈ [−π, π],

(iii) S es impar y C es par.

Demostración

La demostración de estas propiedades se sigue de cálculos elementales.

(i) Lo demostramos para S, ya que para C es análogo. Por el carácter local de
la derivabilidad, S es derivable en todos los puntos de [−π, π] excepto quizá −π

2 y π
2 .

Estudiamos las derivadas laterales en dichos puntos:

S′
(
−π2−

)
= −C ′(0) = S(0) = 0, S′

(
−π2 +

)
= C

(
−π2

)
= 0.

S′
(
π

2−
)

= C

(
π

2

)
= 0, S′

(
π

2 +
)

= C ′ (0) = −S(0) = 0.

Como las derivadas laterales existen y coinciden, entonces S ∈ D[−π, π].

(ii) Para x ∈ [−π
2 ,

π
2 ] se sigue de la definición de C(x). Para x ∈ [π2 , π] tenemos

S(x)2 + C(x)2 = C

(
x− π

2

)2
+ S

(
x− π

2

)2
= 1,

y análogamente para x ∈ [−π,−π
2 ].

(iii) La función S(x) es impar en [−π
2 ,

π
2 ] por ser inversa de la función impar arcsin.

Para verlo, tomamos x ∈ [−π
2 ,

π
2 ], que podemos escribir como x = arcsin y para algún

y ∈ [−1, 1]. Entonces

S(−x) = S(− arcsin y) = S(arcsin(−y)) = −y = −S(x).

Por tanto, C es par en [−π
2 ,

π
2 ], ya que

C(−x) =
√

1− S(−x)2 =
√

1− (−S(x))2 = C(x).
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Ahora, si x ∈ [π2 , π], entonces

S(−x) = −C
(
−x+ π

2

)
︸ ︷︷ ︸

∈[−π/2,0]

= −C
(
x− π

2

)
= −S(x).

Derivando esta identidad tenemos la paridad de la función C:

S(−x) = −S(x) ⇒ −C(−x) = −C(x).

■

Definición 6.56. Se definen el seno y el coseno como las funciones sin, cos : R → R que
extienden a S y C por periodicidad 2π, esto es,

sin x = S(x− 2kxπ), cosx = C(x− 2kxπ),

donde kx ∈ Z es el único entero tal que (2kx − 1)π < x ≤ (2kx + 1)π.

Proposición 6.57. Las funciones sin y cos son derivables en R. Consecuentemente, son de
clase C∞(R). Además, verifican las propiedades de la proposición 6.55 en todo R.

Demostración

Sea B = {(2k + 1)π : k ∈ Z}. Por construcción, sin y cos son derivables en R \ B
y además verifican las propiedades (ii) y (iii) listadas en la proposición 6.55 en
todo R. Demostraremos que sin y cos son derivables en −π y π con sin′ x = cosx y
cos′ x = − sin′ x, lo que nos dará la derivabilidad en todo R junto a la propiedad (i)
completa.

ĺım
x→−π+

sin′(x) = ĺım
x→−π+

C(x) = cos(−π)

ĺım
x→−π−

sin′(x) = ĺım
x→−π−

S′(x+ 2π) = ĺım
x→π−

C(x) = C(π) = C(−π) = cos(−π).

ĺım
x→π−

sin′(x) = ĺım
x→π−

C(x) = cos(π).

ĺım
x→π+

sin′(x) = ĺım
x→π+

S′(x− 2π) = ĺım
x→−π+

C(x) = C(−π) = C(π) = cos(π).

De igual manera,

ĺım
x→−π+

cos′(x) = ĺım
x→−π+

−S(x) = − sin(−π) = sin(π) = 0

ĺım
x→−π−

cos′(x) = ĺım
x→−π−

C ′(x+ 2π) = ĺım
x→π−

−S(x) = −S(π) = 0.

ĺım
x→π−

cos′(x) = ĺım
x→π−

−S(x) = − sin(π) = 0.

ĺım
x→π+

cos′(x) = ĺım
x→π+

C ′(x− 2π) = ĺım
x→−π+

−S(x) = −S(−π) = sin(π) = 0.

■

Probamos a continuación una propiedad fundamental de las funciones seno y coseno, que son las
correspondientes fórmulas de adición. Como consecuencia, encontramos una forma muy práctica
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de derivarlas.

Proposición 6.58. Para cualesquiera x, y ∈ R se tiene:

sen(x+ y) = sen x cos y + cosx sen y, cos(x+ y) = cosx cos y − sen x sen y.

Como consecuencia inmediata se tiene

sen
(
x+ π

2

)
= cosx = sin′ x, cos

(
x+ π

2

)
= − sen x = cos′ x.

Demostración

Fijado y ∈ R, consideramos las funciones f, g : R→ R definidas por

f(x) = sen(x+y)−sen x cos y−cosx sen y, g(x) = cos(x+y)−cosx cos y+sen x sen y

para todo x ∈ R. Queremos ver que f y g son identicamente nulas.
Como f, g ∈ D(R), calculamos sus derivadas:

f ′(x) = cos(x+ y)− cosx cos y + sen x sen y = g(x),
g′(x) = − sen(x+ y) + sen x cos y + cosx sen y = −f(x)

para todo x ∈ R.
Definimos ahora h : R→ R por

h(x) = f(x)2 + g(x)2 para todo x ∈ R.

Entonces h ∈ D(R) y, usando las expresiones anteriores de f ′ y g′, tenemos

h′(x) = 2f(x)f ′(x) + 2g(x)g′(x) = 2f(x)g(x)− 2g(x)f(x) = 0 para todo x ∈ R.

Luego h es constante en R. Como

f(0) = sen y − sen 0 cos y − cos 0 sen y = sen y − sen y = 0,
g(0) = cos y − cos 0 cos y + sen 0 sen y = cos y − cos y = 0,

obtenemos h(0) = 0 y, por tanto, h(x) = 0 para todo x ∈ R.
De f(x)2 + g(x)2 = 0 se deduce necesariamente f(x) = g(x) = 0 para todo x ∈ R. Así,
se verifican las igualdades del enunciado. ■

La proposición anterior nos da una fórmula directa para calcular todas las derivadas de las
funciones seno y coseno en un punto dado. Para todo k ∈ N ∪ {0},

sen(k)(x) = sen
(
x+ kπ

2
)
, cos(k)(x) = cos

(
x+ kπ

2
)
∀x ∈ R.

Teorema 6.59. sin, cos ∈ Cω(R). Además, para cualesquiera a, x ∈ R se tiene

sen x =
∞∑
k=0

sen
(
a+ kπ

2
)

k! (x− a)k, cosx =
∞∑
k=0

cos
(
a+ kπ

2
)

k! (x− a)k.

En particular, tomando a = 0, para todo x ∈ R se verifica

sen x =
∞∑
n=0

(−1)n

(2n+ 1)! x
2n+1, cosx =

∞∑
n=0

(−1)n

(2n)! x
2n.
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Demostración

Esta demostración no se vio en clase.

Fijemos a, x ∈ R con a ≠ x y un n ∈ N∪{0}. Aplicando la fórmula de Taylor con resto
de Lagrange a la función sen en torno a a, obtenemos un punto cn comprendido entre
a y x tal que

sen x−
n∑
k=0

sen
(
a+ kπ

2
)

k! (x− a)k =
sen
(
cn + (n+1)π

2
)

(n+ 1)! (x− a)n+1.

Como | sen(x)| ≤ 1 en R, se tiene∣∣∣∣∣sen x−
n∑
k=0

sen
(
a+ kπ

2
)

k! (x− a)k
∣∣∣∣∣ ≤ |x− a|n+1

(n+ 1)! −→ 0.

El razonamiento para cos es idéntico. Tomando ahora a = 0 y usando que

sen
(kπ

2
)

=
{

0, k par,
(−1)n, impar,

cos
(kπ

2
)

=
{

(−1)n, k = 2n,
0, k impar,

las series se simplifican y obtenemos

sen x =
∞∑
n=0

(−1)n

(2n+ 1)! x
2n+1, cosx =

∞∑
n=0

(−1)n

(2n)! x
2n.

■

Concluimos esta sección introduciendo la función tangente y sus propiedades básicas. Para
facilitar el procedimiento, comenzamos identificando los ceros de la función coseno, para lo cual
basta con identificar los ceros que tiene en su intervalo fundamental: [−π, π].

Si x ∈ (0, π), entonces cos′ x = − sin x < 0, luego cos es una función estrictamente creciente en
[0, π], y por tanto es inyectiva. Como cos 0 = 1 y cosπ = −1, concluimos que cos |[0,π] = [−1, 1].

Definición 6.60. Definimos la función arco-coseno como arc cos : [−1, 1]→ [0, π] dada por

arc cos(y) = cos |−1
[0,π](y) ∀y ∈ [−1, 1].

Por el teorema de derivación de la función inversa, arc cos ∈ D(−1, 1) con

arc cos′(y) = 1
cos |′[0,π](arc cos(y)) = 1

− sin |′[0,π](arc cos(y)) = −1√
1− y2 ,

donde hemos usado que sin z = |sin z| =
√

1− cos2 z para todo z ∈ [0, π].
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x

y

−π 0 π

−1

1
cosx

x

y

−1 0 1

π arc cosx

Como el coseno es una función par y es inyectiva en [0, π], dado y ∈ [−1, 1], las soluciones a la
ecuación cosx = y en [−π, π] son exactamente dos: x = ± arc cos y. Por tanto

Cy = {x ∈ R : cosx = y} = {± arc cos y + 2kπ : k ∈ Z}.

En particular, C0 = {π2 + kπ : k ∈ Z}.

Definición 6.61. La tangente es la función tg : R \ C0 → R dada por

tg x = sin x
cosx ∀x ∈ R \ C0.

x

y

1

x = 1

x

cosx

sin x

tan x

Por el teorema de Thales, la tangente determina la altura a la que la recta vectorial que
determina un ángulo x en la circunferencia unidad corta a la recta vertical x = 1.

Se comprueba sin dificultad que la tg es π−periódica, esto es, tg(x + kπ) = tg(x) para todo
x ∈ Dom(tg) y todo k ∈ Z). Además, tg es derivable en todo su dominio con derivada
tg′(x) = 1 + tg(x)2.

Si bien la periodicidad de la tangente impide que sea inyectiva, podemos pensar en la función
τ = tg(−π/2,π/2). Por el carácter local de la derivabilidad, τ es derivable en (−π

2 ,
π
2 ) con derivada

τ ′(x) = 1 + τ(x)2 ∀x ∈
(−π

2 ,
π

2

)
.

Además,
tg x→ +∞ (x→ π

2
−

) y tg x→ −∞ (x→ −π2
+

),
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x− 3π
2

−π −π
2 0 π

2
π 3π

2

x

y

0

−π
2

π
2

por tanto, la imagen de τ es todo R. Podemos considerar por tanto la función inversa τ−1, a la
que llamamos arcotangente: arc tg : R→ (−π

2 ,
π
2 ).

Gracias a los teoremas de la función inversa, sabemos que arc tg es una función estrictamente
creciente y derivable, con derivada

arc tg′(y) = 1
τ ′(arc tg(y)) = 1

1 + τ(arc tg(y))2 = 1
1 + y2 ∀y ∈ R.

Ejercicios:

(1) Calcular la imagen de la función f : R∗ → R definida por

f(x) = arc tg(log |x|) ∀x ∈ R∗.

(2) Sea f : R \ {1} → R dada por

f(x) = arc tg
(1 + x

1− x

)
∀x ∈ R \ {1}.

Estudiar el comportamiento de f en 1, +∞ y −∞. Calcular su imagen.
(3) Probar que, si a, b ∈ R verifican ab < 1, entonces

arc tg a+ arc tg b = arc tg
(
a+ b

1− ab

)
.

(4) Calcular la imagen de la función F : R+ → R definida por

F (x) =
∫ 1+(x−1)2

1

arc tg t
t2

dt, ∀x ∈ R+.
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(5) Probar que existe una única función f : R→ R que verifica

f(x) + exp(f(x)) = arc tg(f(x)) + x ∀x ∈ R.

Probar también que f ∈ D(R) y calcular f ′(1).
(6) Probar que la función arco–tangente es uniformemente continua, pero su inversa

no lo es.
(7) Probar que, para todo x ∈ (0, π/2), se tiene

2x
π
< sen x < x < tg x.

(8) Dado x ∈ R, estudiar la convergencia de las sucesiones {sen(nx)} y {cos(nx)}.
(9) Estudiar la convergencia de las siguientes sucesiones:{

n sen
(

n

n2 + 1

)}
, {cos2(nπ/2)},

{
(logn) cos

√
n2 + 1

n arc tgn

}
.

(10) Dado α ∈ R, estudiar la convergencia de las siguientes series:

∑
n≥2

cos(nα)
n(logn)2 ,

∑
n≥1

(
sen(1/n)

)α
,

∑
n≥3

(
(1− e−1/n) arc tg(1/n)

logn

)α
.

(11) Sea f : R→ R definida por

f(x) = sen x sen
(1
x

)
∀x ∈ R∗, f(0) = 0.

Estudiar la continuidad y derivabilidad de f , así como su comportamiento en +∞
y −∞.

(12) Sea α ∈ R y f : R+
0 → R definida por

f(x) = xα cos
(1
x

)
∀x ∈ R+, f(0) = 0.

Estudiar la continuidad y derivabilidad de f , así como la continuidad de su derivada.
(13) Sea f : (0, π/2)→ R definida por

f(x) =
( 1

tg x

)senx
∀x ∈ (0, π/2).

¿Puede extenderse f para obtener una función continua en [0, π/2]?
(14) Sea f : (0, π/2)→ R definida por

f(x) = (1 + sen x)
1

tg x ∀x ∈ (0, π/2).

Estudiar la continuidad de f y su comportamiento en 0 y en π/2.
(15) Sean J = [−1/

√
2, 1/
√

2] y g : J → [−π/2, π/2] definida por

g(x) = arc sen
(
2x
√

1− x2) ∀x ∈ J.

Probar que g es biyectiva, continua en J y estrictamente creciente. Dar una
expresión explícita para la función inversa de g.

(16) Dado a ∈ R+, calcular la imagen de la función G : [0, a]→ R definida por

G(x) =
∫ x

−x

√
a2 − t2 dt ∀x ∈ [0, a].
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6.6 Integrales impropias de Riemann
Las nociones de área e integral que hemos desarrollado en este capítulo son en realidad bastante
restrictivas, ya que se limitan a considerar funciones acotadas e intervalos cerrados y acotados.
En muchas situaciones naturales aparecen funciones no acotadas o definidas en intervalos no
acotados para las que puede definirse una noción de área mediante un proceso de paso al límite.
Empezamos con un par de ejemplos sencillos que motivan la extensión de la definición de
integral que haremos.

La función f(x) = 1√
x

no está acotada en el intervalo (0, 1], pero admite la primitiva F (x) = 2
√
x

en [0, 1]. Por tanto, fijado un a > 0 se tiene∫ 1

a

1√
x
dx = F (1)− F (a) = 2− 2

√
a.

Por tanto
ĺım
a→0+

∫ 1

a

1√
x
dx = ĺım

t→0+

(
2− 2

√
t
)

= 2.

Sea ahora α > 0. Para todo b > 0 se tiene∫ b

0
e−αx dx = 1

α

(
1− e−αb).

Luego

ĺım
b→+∞

∫ b

0
e−αx dx = 1

α
.

En este caso la función es acotada, pero el intervalo de integración no lo es.

1
2
3
4

a→ 0+ 1

y = 1√
x

x

y

0,5

1

0 b→ +∞

y = e−x

x

y

Estos ejemplos muestran los dos tipos básicos de integrales impropias de Riemann que conside-
raremos; las que tienen un integrando o un intervalo de integración no acotado.

Definición 6.62. Sea f : [a, b)→ R una función continua, donde suponemos que a ∈ R y que
b es un número real mayor que a o bien b = +∞. Definimos la integral impropia de Riemann de
f en [a, b) como el límite ∫ b

a
f(x) dx = ĺım

t→b−

∫ t

a
f(x) dx,

siempre que dicho límite exista y sea un número real. En ese caso se dice que la integral de f es
convergente en [a, b). En caso contrario diremos que la integral es divergente.

Análogamente definimos la integral impropia en un intervalo (a, b].

Definición 6.63. Sea f : (a, b]→ R una función continua, donde suponemos que b ∈ R y que
a es un número real menor que b o bien a = −∞. Definimos la integral impropia de Riemann
de f en (a, b] como el límite ∫ b

a
f(x) dx = ĺım

t→a+

∫ b

t
f(x) dx,
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siempre que dicho límite exista y sea un número real. En ese caso se dice que la integral de f es
convergente en (a, b].

Cuando f tiene problemas en ambos extremos del intervalo, se define la integral impropia
separando en un punto interior.

Definición 6.64. Sea f : (a, b) → R una función continua, donde −∞ ≤ a < b ≤ +∞, y
tomamos un c ∈ R con a < c < b cualquiera. Se dice que la integral impropia de f en (a, b) es
convergente cuando las integrales impropias de f en (a, c] y en [c, b) son convergentes, en cuyo
caso se define ∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx.

Como aplicación directa de la regla de Barrow tenemos la siguiente relación entre integrabilidad
Riemann y convergencia de la integral impropia de funciones definidas en intervalos acotados.

Proposición 6.65. Sea f : [a, b]→ R una función continua. Entonces la integral impropia de
f en (a, b) converge a

∫ b
a f(x)dx.

Nota: Como para todo c′ ∈ (c, b) se verifica la igualdad∫ x

c
f(t) dt =

∫ c′

c
f(t) dt+

∫ x

c′
f(t) dt,

se deduce que la convergencia de la integral de f en [c, b) equivale a la convergencia
de la integral de f en [c′, b). Es decir, el punto interior c usado en la definición de la
integral en (a, b) es irrelevante.

Ejemplo

Sea α ̸= 1. Para todo t > 1 se tiene∫ t

1

1
xα

dx = t1−α

1− α −
1

1− α.

De aquí deducimos, para la integral impropia en [1,+∞),

∫ +∞

1

1
xα

dx = ĺım
t→+∞

∫ t

1

1
xα

dx =


1

α− 1 , si α > 1,

+∞, si α < 1.

Análogamente, para la integral impropia en (0, 1] obtenemos

∫ 1

0

1
xα

dx = ĺım
t→0+

∫ 1

t

1
xα

dx =


1

1− α, si α < 1,

+∞, si α > 1.

Naturalmente, no siempre dispondremos de una primitiva expresable mediante funciones ele-
mentales, o bien su cálculo puede resultar excesivamente laborioso. Si lo único que nos interesa
es saber si una integral impropia es convergente o divergente, podemos recurrir a varios criterios
que permiten decidirlo por comparación con otras funciones cuyo comportamiento sí conocemos.
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Consideraremos integrales definidas en intervalos del tipo [a, b) donde a < b ≤ +∞. Resultados
análogos valen para intervalos del tipo (a, b], donde −∞ ≤ a < b.

El caso en que la función integrando es positiva es particularmente sencillo, ya que si f ≥ 0
entonces la función t 7→

∫ t
a f(x)dx creciente, y por tanto solo converger o divergir a +∞ cuando

t→ b−.

Proposición 6.66. Sea f una función continua y no negativa en [a, b). Entonces la integral de
f en [a, b) es convergente si, y sólo si, la función de área

F (t) =
∫ t

a
f(t) dt

está mayorada en [a, b), en cuyo caso∫ b

a
f(x) dx = sup {F (t) : t ∈ [a, b)} .

En caso contrario la integral de f en [a, b) diverge a +∞.

Como consecuencia de este hecho tenemos varios criterios de comparación, análogos a los que
demostramos para series de términos negativos.

Proposición 6.67 (Criterio de comparación). Sean f, g ∈ C[a, b) satisfaciendo

0 ≤ f(x) ≤ g(x) ∀x ∈ [a, b).

Si
∫ b
a g(x)dx es convergente, entonces

∫ b
a f(x)dx es convergente.

Si
∫ b
a f(x)dx es divergente, entonces

∫ b
a f(x)dx es divergente.

■

Ejemplo

Problema. Estudiar el carácter de la integral impropia
∫+∞

0 e−x2
dx.

Resolución. La primitiva de x 7→ e−x2 no puede expresarse usando las funciones
vistas hasta ahora, así que aplicaremos el criterio visto anteriormente. En primer lugar,
descomponemos la integral para poder estimar cada parte por separado:∫ +∞

0
e−x2

dx =
∫ 1

0
e−x2

dx+
∫ +∞

1
e−x2

dx.

La función e−x2 es continua en [0, 1], luego es integrable en dicho intervalo.

Sea ahora x ≥ 1, entonces x2 ≥ x, de donde

−x2 ≤ −x =⇒ e−x2 ≤ e−x.

Sabemos que ∫ +∞

1
e−t dt =

[
−e−t]+∞

1 = 1
e
,

por lo que la integral de e−x en [1,+∞) es convergente. Como 0 ≤ e−x2 ≤ e−x para
todo x ≥ 1, el criterio de comparación nos dice que

∫+∞
0 e−x2

dx también es convergente.
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Concluimos que la integral de e−x2 converge en [0,+∞).

Nota: Usando herramientas de la asignatura de Cálculo II podrá verse que el valor de
la integral anterior es

√
π/2.

Proposición 6.68 (Criterio de comparación por paso al límite). Sean f y g continuas y
positivas en [a, b) con g(x) ̸= 0 para todo x ∈ [a, b). Supongamos que existe L ∈ R+ tal que

ĺım
x→b−

f(x)
g(x) = L.

Entonces las integrales de f y g en [a, b) o bien ambas convergen, o bien ambas divergen
positivamente. ■

Ejemplo

Problema. Estudiar el carácter de la integral∫ +∞

0

dx√
x2 + 1

.

Resolución. En cada intervalo [0,M ], con M > 0, la función

f(x) = 1√
x2 + 1

es continua, luego integrable. Fijamos M suficientemente grande y escribimos∫ +∞

0

dx√
x2 + 1

=
∫ M

0

dx√
x2 + 1

+
∫ +∞

M

dx√
x2 + 1

.

El primer sumando es una integral ordinaria. Para el segundo aplicamos el criterio de
comparación por paso al límite con g(x) = 1/x. Observamos que

ĺım
x→+∞

f(x)
g(x) = ĺım

x→+∞

1√
x2 + 1

1
x

= ĺım
x→+∞

x√
x2 + 1

= 1.

Además, ∫ +∞

M

dx

x
=
[
log x

]+∞
M
→ +∞,

es decir, la integral de g diverge positivamente. Por el criterio límite de comparación
con funciones positivas, se deduce que∫ +∞

M

dx√
x2 + 1

→ +∞,

y, en consecuencia, ∫ +∞

0

dx√
x2 + 1

→ +∞.
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Definición 6.69. Se dice que la integral impropia de f en un cierto intervalo es absolutamente
convergente cuando la integral impropia de |f | es convergente en dicho intervalo.

Naturalmente, los criterios de convergencia anteriores, formulados para integrales de funciones
positivas, pueden usarse para estudiar la convergencia absoluta de la integral de cualquier
función.

Teorema 6.70. Si la integral impropia de f es absolutamente convergente en [a, b), entonces
la integral impropia de f en [a, b) también es convergente.

Demostración

Esta demostración no se vio en clase.

Denotemos
G(x) =

∫ x

a
|f(t)| dt, F (x) =

∫ x

a
f(t) dt

para x ∈ [a, b). Sea {xn} ⊂ [a, b) una sucesión tal que xn < b para todo n ∈ N y
{xn} → b. Como f es absolutamente integrable, G(xn) es convergente, luego es de
Cauchy. Nuestro objetivo será probar que {F (xn)} también es de Cauchy.

Sean ε > 0 y n0 ∈ N tal que, para m,n ≥ n0 se tiene |G(xn)−G(xm)| < ε. Entonces,

F (xm)− F (xn) =
∫ xm

a
f(t) dt−

∫ xn

a
f(t) dt =

∫ xm

xn

f(t) dt.

Usando las propiedades de la integral:

∣∣F (xm)− F (xn)
∣∣ ≤ ∣∣∣∣∫ xm

xn

|f(t)| dt
∣∣∣∣ = |G(xm)−G(xn)| < ε.

Hemos probado que F (xn) es de Cauchy, y por tanto convergente. ■

Ejemplo

La integral impropia de la función f : R+
0 → R dada por

f(x) = sin x
x

, ∀x > 0, f(0) = 1,

converge en [0,+∞) pero no es absolutamente convergente.
Resolución.

Empezamos estudiando su convergencia. Tomamos R > 1 y escribimos∫ R

0

sin x
x

dx =
∫ 1

0

sin x
x

+
∫ R

1

sin x
x

dx.

Como f es continua en [0, 1], nos ocupamos de la segunda integral. Integramos por
partes tomando

u = 1
x
, dv = sen x dx, ⇒ du = − 1

x2 dx, v = − cosx.
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Entonces ∫ R

1

sen x
x

dx = − cosR
R

+ cos 1−
∫ R

1

cosx
x2 dx.

Observamos ahora que ∣∣∣cosx
x2

∣∣∣ ≤ 1
x2 ∀x ≥ 1,

Por el criterio de comparación,∫ +∞

1

dx

x2 converge =⇒
∫ +∞

1

cosx
x2 dx converge absolutamente.

Aquí se hace evidente la importancia de haber partido la integral en x = 1, ya que la
integral anterior no converge en (0,+∞), y no podríamos comparar directamente en
dicho intervalo.

Tomando límite cuando R→ +∞ se tiene∫ +∞

0

sin x
x

dx =
∫ 1

0

sin x
x

dx+ cos 1−
∫ +∞

1

cosx
x2 dx,

luego es convergente.

Estudiamos ahora la convergencia absoluta∫ +∞

0

| sen x|
x

dx.

Para cada n ∈ N consideramos el intervalo [(n− 1)π, nπ]. Usando la periodicidad π de
la función |sin x| tenemos:∫ nπ

(n−1)π

| sen x|
x

dx ≥ 1
nπ

∫ nπ

(n−1)π
| sen x| dx = 1

nπ

∫ π

0
| sen x| dx = 2

nπ
.

Sumando desde n = 1 hasta n = N , obtenemos

∫ Nπ

0

| sen x|
x

dx =
N∑
n=1

∫ nπ

(n−1)π

| sen x|
x

dx ≥ 2
π

N∑
n=1

1
n
.

Sabemos que la serie armónica
∞∑
n=1

1
n

diverge, luego

∫ +∞

0

| sen x|
x

dx→ +∞.

1

y = sin x
x

x

y
1

y = | sin x|
x

x

y
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El método anterior puede aplicarse en el estudio del comportamiento asintótico de sucesiones
tales como log(n!).

Ejemplo

Se verifica
ĺım

n→+∞

log(n!)
n logn− n = 1.

Resolución. Sea n ∈ N. Nuestra primera tarea es encontrar una estima inferior y otra
superior para logn! usando áreas.

Como log x es creciente, para cada k = 1, . . . , n y todo x ∈ [k−1, k] se tiene log x ≤ log k.
Integrando en [k − 1, k]: ∫ k

k−1
log x dx ≤ log k.

Sumando de k = 1 a n,∫ n

0
log x dx =

n∑
k=1

∫ k

k−1
log x dx ≤

n∑
k=1

log k = log(n!).

La integral de la izquierda es impropia, pero sabemos que x log x− x es una primitiva
de log x en R+, de modo que∫ n

0
log x dx = ĺım

t→0+

∫ n

t
log x dx = n logn− n.

En consecuencia,
n logn− n ≤ log(n!). (1)

Por otra parte, para cada k = 1, . . . , n y todo x ∈ [k, k + 1] se verifica log k ≤ log x.
Integrando en [k, k + 1]:

log k ≤
∫ k+1

k
log x dx.

Sumando de k = 1 a n,

log(n!) =
n∑
k=1

log k ≤
∫ n+1

1
log x dx =

[
x log x− x

]n+1
1 = (n+ 1) log(n+ 1)− n.

Por tanto
log(n!) ≤ (n+ 1) log(n+ 1)− n. (2)

De (1) y (2) obtenemos, para todo n ≥ 1,

n logn− n ≤ log(n!) ≤ (n+ 1) log(n+ 1)− n.

Dividimos toda la desigualdad por n logn− n, que es positivo para n ≥ 2:

1 ≤ log(n!)
n logn− n ≤

(n+ 1) log(n+ 1)− n
n logn− n .

Para ver que el extremo derecho tiende también a 1 cuando n→ +∞ basta con aplicar
la regla de L’Hôpital dos veces al límite funcional

ĺım
x→+∞

(x+ 1) log(x+ 1)− x
x log x− x .
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Ejercicio: Usar el ejemplo anterior para calcular

ĺım
n→+∞

n
n
√
n!
, ĺım

n→+∞

1
n

log
(

2n
n

)
.

Ejercicio: Sea α ∈ (0, 1). Demostrar que

ĺım
n→+∞

1
n

log
(

n

⌊αn⌋

)
= −α logα− (1− α) log(1− α).

Sugerencia: Ver primero que ĺım
n→+∞

⌊αn⌋
n

= α.

Si no estaba suficientemente clara la estrecha relación entre series e integrales, el siguiente
resultado establece una equivalencia entre la convergencia de ciertas series de números positivos
con la convergencia de una integral impropia.

Teorema 6.71 (Criterio de la integral para series). Sea n0 ∈ N. Supongamos que f ∈ C[n0,+∞)
es no negativa y decreciente. Entonces

∑
n≥n0

f(n) converge ⇔
∫ +∞

n0
f(x) dx converge.

Demostración

Como f es decreciente, para cada intervalo (n, n+ 1) con n ≥ n0 se tiene

f(n) = f(n)
(
(n+ 1)− n

)︸ ︷︷ ︸
área del rectángulo de altura f(n)

≥
∫ n+1

n
f(x) dx ≥ f(n+1)

(
(n+1)−n

)
= f(n+1).

Sumando estas desigualdades desde n = n0 hasta n = m− 1, obtenemos

m−1∑
n=k

f(n) ≥
∫ m

k
f(x) dx ≥

m∑
n=k+1

f(n)

para todo m > n0. Por tanto, las sumas parciales de la
∑
m≥n0 f(m) están mayoradas

si, y solo si, lo está la sucesión
∫m
n0
f(x)dx. ■

Ejemplo

Problema. Estudiar la convergencia de la serie
∑
n≥2

1
n logn.
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Resolución. Buscamos aplicar el criterio de la integral. Sea

f : [2,+∞)→ R, f(x) = 1
x log x.

Claramente f ∈ D([2,+∞)) y

f ′(x) = − 1 + log x
x2(log x)2 ≤ 0 ∀x ≥ 2.

Por tanto, f es decreciente en [2,+∞).

Estudiamos ahora la integral impropia mediante el cambio de variable u = log x,
du = 1

x
dx, obteniendo

∫ +∞

2

dx

x log x =
∫ +∞

log 2

du

u
=
[
log u

]+∞

log 2
→ +∞.

La integral diverge a +∞, y como f es positiva, continua y decreciente en [2,+∞), el
criterio de la integral nos dice que la serie

∑
n≥2

1
n logn

es divergente.

Nótese que esta serie puede ser estudiada de forma más directa usando el criterio de
condensación.

Anexos del capítulo: algunos métodos de cálculo de primitivas

Primitivas de funciones elementales

Recordamos primero un pequeño formulario de primitivas que usaremos como referencia. Todas
las identidades siguientes pueden comprobarse derivando el término de la derecha. En todas
ellas, C ∈ R denota una constante arbitraria.

∫
0 dx = C,

∫
xα dx = xα+1

α+ 1 + C si α ̸= −1,∫ 1
x
dx = log |x|+ C,

∫
ax dx = ax

log a + C (a > 0, a ̸= 1),∫
sin x dx = − cosx+ C,

∫
cosx dx = sin x+ C,∫ 1

cos2 x
dx = tg x+ C,

∫ 1
sin2 x

dx = − 1
tg x + C,∫ 1

1 + x2 dx = arc tg x+ C,

∫ 1√
1− x2

dx = arcsin x+ C.
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1. Integrales por sustitución o cambio de variable

Sea ψ : [ã, b̃]→ [a, b] una función derivable y sea f : [a, b]→ R continua. Entonces∫ b̃

ã
f(ψ(x))ψ′(x) dx =

∫ ψ(b̃)

ψ(ã)
f(t) dt.

En términos de integrales indefinidas,∫
f(ψ(x))ψ′(x) dx =

∫
f(t) dt, t = ψ(x).

Obsérvese que la primera identidad es una igualdad entre números reales, por lo que no hay
que deshacer el cambio de variable t = φ(x); dicha información va implícita en el cambio de
los límites de integración. En cambio, la segunda identidad es una entre funciones, por lo que
deben estar expresadas en una misma variable, y por tanto debemos sustituir t = φ(x) al final
del cálculo.

Ejemplo

Problema. Calcular ∫ π/2

0
sen3 x cosx dx.

Resolución. Escribimos

∫ π/2

0
sen3 x︸ ︷︷ ︸

función de senx

derivada de senx︷ ︸︸ ︷
cosx dx .

Tomamos t = sen x, de modo que dt = cosx dx y, cuando x = 0, t = 0, mientras que
cuando x = π/2, t = 1. Entonces

∫ π/2

0
sen3 x cosx dx =

∫ 1

0
t3 dt =

[
t4

4

]1

0
= 1

4 .

Ejemplo

Problema. Calcular una primitiva de la función tg x.
Resolución. Partimos de

∫
tg x dx =

∫ sen x
cosx dx = −

∫ dt︷ ︸︸ ︷
− sen x dx

cosx︸ ︷︷ ︸
t

.

Tomando t = cosx se tiene dt = − sen x dx y, por tanto,∫
tg x dx = −

∫ 1
t
dt = − log |t|+ C = − log | cosx|+ C.

Hemos deshecho el cambio t = cosx para volver a la variable x, que es en la que estaba
planteado el problema.
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2. Integración por partes

Sean f, g : [a, b]→ R funciones derivables. Entonces∫ b

a
f(x)︸ ︷︷ ︸
u

g′(x)︸ ︷︷ ︸
dv

dx =
[
f(x)g(x)

]b
a
−
∫ b

a
f ′(x)︸ ︷︷ ︸
du

g(x)︸︷︷︸
v

dx.

Para la integral indefinida, se tiene la fórmula análoga∫
f(x)g′(x)dx = f(x)g(x)−

∫
f ′(x)g(x)dx

Esta técnica es especialmente útil cuando queremos integrar un producto en el que un factor es
fácil de derivar y el otro es fácil de integrar.

Ejemplo

Problema. Calcular una primitiva de x log x.
Resolución. Elegimos

u︸︷︷︸
difícil de integrar

= log x, dv︸︷︷︸
fácil de integrar

= x dx.

Entonces du = 1
x
dx y v = x2

2 , de modo que

∫
x log x dx = log x︸ ︷︷ ︸

u

x2

2︸︷︷︸
v

−
∫ 1

x︸︷︷︸
du

x2

2︸︷︷︸
v

dx

= 1
2x

2 log x− 1
2

∫
x dx = 1

2x
2 log x− 1

4x
2 + C.

Ejemplo

Problema. Calcular ∫ 2

1
log x dx.

Resolución. Tomamos u = log x, dv = dx; entonces du = 1
x
dx y v = x. Aplicando

integración por partes en [1, 2]:∫ 2

1
log x dx =

[
log x︸ ︷︷ ︸
u

x︸︷︷︸
v

]2
1 −

∫ 2

1

1
x︸︷︷︸
du

x︸︷︷︸
v

dx

=
[
x log x

]2
1 −

∫ 2

1
1 dx = 2 log 2− 1.

En ocasiones, al aplicar integración por partes sucesivamente entramos en un bucle que termina
por volver al punto de partida. Ejemplificamos a continuación un método que permite resolver
algunos de estos casos.
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Ejemplo

Problema. Calcular una primitiva de e−x sen x.
Resolución. Sea

I =
∫
e−x sen x dx.

Integramos por partes tomando u = e−x y dv = sen x dx. Entonces du = −e−xdx y
v = − cosx, y

I = −e−x cosx−
∫
e−x cosx dx.

Denotemos
J =

∫
e−x cosx dx.

Volvemos a integrar por partes en J repitiendo la elección de u y v que hemos hecho
en el paso anterior (si no, terminaremos por deshacer la integración por partes y llegar
a 0 = 0). Tomamos por tanto u = e−x, dv = cosx dx; así du = −e−xdx y v = sen x, y

J = e−x sen x+ I.

Sustituyendo en la expresión de I,

I = −e−x cosx− (e−x sen x+ I),

por lo que

2I = −e−x(cosx+ sen x), I = −1
2e

−x(cosx+ sen x) + C.

3. Integración de funciones racionales

Nos ocupamos ahora del cálculo de primitivas de funciones racionales, esto es, integrales de la
forma ∫

P (x)
Q(x) dx,

donde P,Q son polinomios. En primer lugar nos limitaremos al caso en que degP < degQ ≤ 2.
Si degP ≥ degQ, empezamos haciendo la división de polinomios para escribir el integrando
como suma de un polinomio y una fracción propia.

3.i Caso degQ = 1

Sean a, b, c ∈ R con b ̸= 0. Entonces

∫
a

bx+ c
dx = a

b

∫ dt︷︸︸︷
b dx

bx+ c︸ ︷︷ ︸
t

= a

b

∫ 1
t
dt = a

b
log |t|+K = a

b
log |bx+ c|+K.

3.ii Caso degQ = 2 y Q tiene dos raíces simples

Si r1, r2 son las raíces reales de Q, buscamos constantes A,B ∈ R tales que
P (x)
Q(x) = A

x− r1
+ B

x− r2
.
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Ejemplo

Problema. Calcular ∫
x− 1

4x2 − 1 dx.

Resolución. Las raíces de 4x2 − 1 son r1 = 1/2 y r2 = −1/2. Buscamos A,B ∈ R
tales que

x− 1
4x2 − 1 = A

x− 1
2

+ B

x+ 1
2
.

Equivalente a

x− 1 = A
(
x+ 1

2
)

+B
(
x− 1

2
)

= (A+B)x+ A−B
2 .

Comparando coeficientes,

A+B = 1, A−B
2 = −1.

De aquí se obtiene A = −1
8, B = 3

8, y por tanto

x− 1
4x2 − 1 = −1

8
1

x− 1
2

+ 3
8

1
x+ 1

2
.

Integrando,∫
x− 1

4x2 − 1 dx = −1
8

∫ 1
x− 1

2
dx+ 3

8

∫ 1
x+ 1

2
dx = −1

8 log
∣∣x− 1

2
∣∣+ 3

8 log
∣∣x+ 1

2
∣∣+ C.

3.iii Caso Q con una raíz doble: integrales log–potencia

Si Q(x) tiene una raíz doble r, el camino más rápido suele ser la sustitución t = x− r.

Ejemplo

Problema. Calcular ∫
x

x2 + 2x+ 1 dx.

Resolución. Observamos que x2 + 2x + 1 = (x + 1)2 tiene una raíz doble r = −1.
Tomamos t = x+ 1, de modo que dt = dx y

x

x2 + 2x+ 1 = t− 1
t2

= 1
t
− 1
t2
.

Así, ∫
x

x2 + 2x+ 1 dx =
∫ (1

t
− 1
t2

)
dt =

∫ 1
t
dt−

∫ 1
t2
dt

= log |t|+ 1
t

+ C = log(1 + x) + 1
1 + x

+ C.
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Alternativamente, podríamos buscar una descomposición en fracciones simples de la forma

A

x− r
+ B

(x− r)2 ,

Ejemplo

Problema. Calcular la integral ∫ 1

0

x

(x+ 1)2 dx.

Resolución. Buscamos A,B ∈ R tales que

x

(x+ 1)2 = A

x+ 1︸ ︷︷ ︸
término logarítmico

+ B

(x+ 1)2︸ ︷︷ ︸
término potencia

.

Esto equivale a
x = A(x+ 1) +B ∀x ∈ R.

Evaluando en x = 0 y x = −1 obtenemos el sistema0 = A+B,

−1 = B,
=⇒ A = 1, B = −1.

Por tanto, ∫ 1

0

x

(x+ 1)2 dx =
∫ 1

0

( 1
x+ 1 −

1
(x+ 1)2

)
dx

=
[
log(x+ 1)

]1
0

+
[ 1
x+ 1

]1
0

= log 2 + 1
2 − 1 = log 2− 1

2 .

Ejemplo. Cálculo de una integral definida usando una descomposición en fracciones simples:∫ 1

0

x

(x+ 1)2 dx.

Buscamos A,B ∈ R tales que

x

(x+ 1)2 = A

x+ 1︸ ︷︷ ︸
término logarítmico

+ B

(x+ 1)2︸ ︷︷ ︸
término potencia

.

Equivalente a
x = A(x+ 1) +B ∀x ∈ R,

y evaluando en x = 0 y x = −1 obtenemos0 = A+B,

−1 = B,
=⇒ A = 1, B = −1.
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Por tanto ∫ 1

0

x

(x+ 1)2 dx =
∫ 1

0

( 1
x+ 1 −

1
(x+ 1)2

)
dx

=
[
log(x+ 1)

]1
0

+
[ 1
x+ 1

]1
0

= log 2 + 1
2 − 1 = log 2− 1

2 .

3.iv Caso Q sin raíces reales: integrales del tipo log–arc tg

Supongamos que Q(x) es un polinomio de grado 2 sin raíces reales y que el numerador tiene
grado 1. El objetivo es forzar que en el numerador aparezca la derivada de Q, para obtener un
término logarítmico, y tratar el resto como una integral inmediata de la arctangente.

Caso «más general».

(No cubrimos todos los casos posibles, pero sí los más factibles de tratar a mano.)

Supongamos que Q y P son polinomios y que Q factoriza de la forma

Q(x) =
coeficiente líder︷︸︸︷

a (x− r1)k1 · · · (x− rn)kn q1(x) · · · qm(x),

donde r1, . . . , rn son raíces reales distintas, de multiplicidades k1, . . . , kn, y q1, . . . , qm son
polinomios irreducibles de grado 2. Si degP < degQ, podemos escribir

P (x)
Q(x) = a11

x− r1
+ a12

(x− r1)2 + · · ·+ a1k1

(x− r1)k1

+ · · ·+ an1
x− rn

+ · · ·+ ankn

(x− rn)kn

+ α1x+ β1
q1(x) + · · ·+ αmx+ βm

qm(x) ,

para ciertos coeficientes reales aij , αj , βj que se determinan resolviendo un sistema de ecuaciones
lineales. Cada uno de los sumandos anteriores se integra mediante las fórmulas ya vistas
(logaritmos, potencias y términos del tipo arco-tangente).

4. Potencias de senos y cosenos

Afrontamos ahora el cálculo de integrales del tipo∫
sinn x cosm x dx,

distinguiendo dos casos según haya un exponente impar o no.

4.i Caso con un exponente impar

Si uno de los exponentes es impar, separamos una potencia 1 de dicho exponente y escribimos
el resto como función de una sola razón trigonométrica.
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Ejemplo

Problema. Calcular ∫
sin2 x cos3 x dx.

Resolución. En este caso el exponente impar es el de cosx:∫
sin2 x cos3 x dx =

∫
sin2 x cos2 x cosx dx

=
∫

sin2 x (1− sin2 x) cosx dx.

Hacemos el cambio t = sin x, de modo que dt = cosx dx y

sin2 x︸ ︷︷ ︸
t2

(1− sin2 x︸ ︷︷ ︸
t2

) dx ⇝ t2(1− t2) dt.

Por tanto, ∫
sin2 x cos3 x dx =

∫
t2(1− t2) dt =

∫
(t2 − t4) dt

= t3

3 −
t5

5 + C = sin3 x

3 − sin5 x

5 + C.

4.ii Ambos exponentes pares

Cuando tanto n como m son pares, la técnica anterior no funciona directamente. En ese caso
usamos las identidades

sin2 x+ cos2 x = 1, cos2 x− sin2 x = cos 2x,

de donde se obtiene

cos2 x = 1
2
(
1 + cos 2x

)
, sin2 x = 1

2
(
1− cos 2x

)
.

Ejemplo

Problema. Calcular ∫
sin2 x cos2 x dx.

Resolución. Usamos las fórmulas de reducción de exponente:∫
sin2 x cos2 x dx =

∫ (
1
2(1− cos 2x)

)
︸ ︷︷ ︸

sin2 x

(
1
2(1 + cos 2x)

)
︸ ︷︷ ︸

cos2 x

dx

= 1
4

∫
(1− cos2 2x) dx

= 1
4

∫
1 dx− 1

4

∫
cos2 2x dx.

Aplicamos de nuevo la misma identidad a cos2 2x:

cos2 2x = 1
2
(
1 + cos 4x

)
,
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de forma que ∫
sin2 x cos2 x dx = 1

4x−
1
4

∫ 1
2
(
1 + cos 4x

)
dx

= x

4 −
1
8

∫
(1 + cos 4x) dx

= x

4 −
x

8 −
1
8

∫
cos 4x dx

= x

8 −
1
32 sin 4x+ C.

5. Integrales a trozos. Simetrías

Cuando integramos funciones definidas a trozos, conviene dividir el intervalo de integración en
los puntos donde cambia la definición de la función, usando la aditividad de la integral.

Ejemplo

Problema. Calcular ∫ 2

0
|x2 − 1| dx.

Resolución. Escribimos el integrando como una función a trozos:

|x2 − 1| =

x
2 − 1, x2 − 1 ≥ 0 ⇐⇒ x ≥ 1,

1− x2, x2 − 1 < 0 ⇐⇒ x ∈ (−1, 1).

En el intervalo de integración esto se traduce en∫ 2

0
|x2 − 1| dx =

∫ 1

0
(1− x2) dx+

∫ 2

1
(x2 − 1) dx.

Calculamos ambas integrales:∫ 1

0
(1− x2) dx =

[
x− x3

3
]1

0
= 1− 1

3 ,∫ 2

1
(x2 − 1) dx =

[x3

3 − x
]2

1
=
(8

3 − 2
)
−
(1

3 − 1
)
.

Sumando, ∫ 2

0
|x2 − 1| dx =

(
1− 1

3
)

+
(8

3 − 2
)
−
(1

3 − 1
)

= 2.

Supongamos ahora que tenemos un intervalo simétrico respecto de 0, es decir, [−M,M ] para
algún M > 0.

Si f es impar, es decir, f(−x) = −f(x), entonces∫ M

−M
f(x) dx = 0.
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Si f es par, es decir, f(x) = f(−x), entonces∫ M

−M
f(x) dx = 2

∫ M

0
f(x) dx.

x

y

−M M
x

y

−M M

Ambas identidades se demuestran de forma inmediata dividiendo el intervalo de integración en
[−M, 0] y [0,M ] y aplicando el cambio de variable −x = t en la integral a la izquierda de 0.

Ejemplo

Problema. Calcular ∫ 2

−2
x5 sin(x2) dx.

Resolución. El intervalo de integración es simétrico respecto de 0, así que estudiamos
la simetría del integrando

f(x) = x5 sin(x2).

Tenemos
f(−x) = (−x)5 sin

(
(−x)2) = −x5 sin(x2) = −f(x),

luego f es impar. Por la propiedad anterior,∫ 2

−2
x5 sin(x2) dx = 0

por simetría.
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