
Cálculo I: Grado en Ing. Informática 2025/26

Este examen consta de dos partes:

El segundo examen parcial consta de 4 ejercicios y se entregará transcurridas
2 horas. La puntuación máxima de esta parte es de 12 puntos. Esta parte es obliga-
toria para todos los alumnos.

La segunda parte del examen, junto con el segundo parcial, constituye el examen
final. La duración máxima de la prueba conjunta es de 3 horas. El examen final consta
en total de 6 ejercicios y tiene una puntuación máxima de 19 puntos. Esta parte es
obligatoria para los alumnos cuya nota de evaluación continua de la primera
parte del curso sea inferior a 4.

Las respuestas deben redactarse en el espacio habilitado para ello.

En Madrid, a 16 de enero de 2026.



Apellidos: Nombre:

Grupo: □ 111 Caterina Campagnolo □ 112 Sergio Cruz

Ejercicio 1 (2 puntos)

Calcular el número exacto de soluciones de la ecuación 3 log x = x para x > 0.

Solución.
Consideramos

f(x) = 3 log x − x, x > 0.

Buscamos el número de ceros de f en (0, +∞). Derivando,

f ′(x) = 3
x

− 1 = 3 − x

x
.

Luego f ′(x) > 0 si 0 < x < 3 y f ′(x) < 0 si x > 3, de modo que f es estrictamente
creciente en (0, 3), estrictamente decreciente en (3, +∞), y tiene un máximo global en
x = 3. Por tanto, f es inyectiva en (0, 3) y en (3, +∞) y solo puede haber, como máximo,
una solución en cada intervalo.

Además,

f(3) = 3 log 3 − 3 > 0, ĺım
x→0+

f(x) = −∞, ĺım
x→+∞

f(x) = −∞.

(En este paso, es suficiente con encontrar un valor de f negativo a la izquierda de x = 3
y otro a la derecha.) Por continuidad, como f sube desde −∞ hasta un valor positivo y
luego baja hasta −∞, la ecuación f(x) = 0 tiene exactamente dos soluciones en (0, +∞).
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Alternativamente, puede usarse el teorema de Rolle para justificar que no hay más
soluciones, ya que si hubiera otra existiría un punto c ∈ (0, +∞), c ≠ 3, con f ′(c) = 0, lo
cual es imposible porque la derivada solo se anula en 3.



Ejercicio 2 (3 puntos)

Sea f : R → R dada por

f(x) = x sen x − sen2 x, ∀x ∈ R.

(i) Calcular el polinomio de Taylor de orden 4 de f centrado en a = 0.

(ii) Evaluar el límite

ĺım
x→0

f(x)
x4

Recuerda: 2 sen x cos x = sen 2x.

Solución
Sea f : R → R dada por f(x) = x sen x − sen2 x.

Para calcular el polinommio de Taylor de orden 4 de f no necesitamos siquiera hacer las
derivadas de f . Sabemos que

sen(0) = 0, sen′(0) = cos(0) = 1, sen′′(0) = − sen(0) = 0, sen′′′(0) = − cos(0) = −1.

Por tanto,
T3[sen, 0](x) = x − x3

6 .

Entonces
T4[x sen x, 0] = x2 − x4

6 , y T4[sen2, 0] = x2 − x4

3 .

Por tanto,
T4[f, 0](x) = x2 − x4

6 − x2 + x4

3 = x4

6 .

Ahora, usando la fórmula infinitesimal del resto:

ĺım
x→0

f(x)
x4 = ĺım

x→0

1
6x4 + R4(x)

x4 = 1
6 .

Alternativamente, puede usarse la regla de L’Hôpital 4 veces para llegar a la misma
conclusión.



Ejercicio 3 (3 puntos)

Calcular el área geométrica (sin signo) encerrada entre las gráficas de las funciones
f, g : (0, e) → R dadas por

f(x) = log x, g(x) = − log x, ∀x ∈ (0, e)

Solución.
Los puntos de corte de f y g satisfacen log x = − log x, es decir 2 log x = 0, luego x = 1.

En (0, 1) se tiene log x < 0, por tanto g(x) = − log x está por encima de f(x) = log x. En
(1, e) ocurre lo contrario: log x > 0 y entonces f está por encima de g.

Así, el área geométrica pedida es

A =
∫ 1

0

(
g(x) − f(x)

)
dx +

∫ e

1

(
f(x) − g(x)

)
dx =

∫ 1

0

(
−2 log x

)
dx +

∫ e

1

(
2 log x

)
dx.

Integrando por partes vemos que x log x − x es una primitiva de log x, lo que nos da∫ 1

0
log x dx =

[
x log x − x

]1
0

= (−1) − ĺım
x→0+

(x log x − x) = −1,

donde hemos usado la escala de infinitos (o la regla de L’Hôpital) para ver que

ĺım
x→0+

x log x = ĺım
x→+∞

− log x

x
= 0.

Además, ∫ e

1
log x dx =

[
x log x − x

]e
1

= (e · 1 − e) − (0 − 1) = 1.

Por tanto,
A = −2

∫ 1

0
log x dx + 2

∫ e

1
log x dx = −2(−1) + 2(1) = 4.
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Ejercicio 4 (4 puntos)

Sea F : (0, +∞) → R la función dada por

F (x) =
∫ x

1/x

e−t

t
dt, ∀x > 0.

(i) Demostrar que, de las siguientes integrales impropias, la primera diverge a +∞ y la
segunda es convergente: ∫ 1

0

e−t

t
dt,

∫ +∞

1

e−t

t
dt.

(ii) Calcular F ′.

(iii) Demostrar que F es creciente en (0, +∞) y calcular su imagen.

Solución.
(i) Para t ∈ (0, 1] se cumple e−t ≥ e−1, luego∫ 1

0

e−t

t
dt ≥ 1

e

∫ 1

0

dt

t
= +∞.

Por otro lado, para t ≥ 1 se tiene 1
t

≤ 1, así que
∫ +∞

1

e−t

t
dt ≤

∫ +∞

1
e−t dt =

[
− e−t

]+∞

1
= 1

e
< +∞.

Alternativamente, como t → e−t

t
es decreciente, podemos usar el criterio de la

integral para series y considerar la serie

∑
n≥1

e−n

n
.

Aplicando el criterio del cociente:

e−n−1

n + 1 · n

e−n
→ 1

e
< 1,

luego la integral converge.

(ii) La función t → e−t

t
es continua en (0, +∞), luego admite una primitiva G. Por la

regla de Barrow tenemos F (x) = G(x) − G(1/x) y podemos derivar usando la regla
de la cadena.

F ′(x) = e−x

x
− e−1/x

1/x

(
− 1

x2

)
= e−x

x
+ e−1/x

x
= e−x + e−1/x

x
.

(iii) Para todo x > 0, F ′(x) = e−x+e−1/x

x
> 0, luego F es estrictamente creciente en

(0, +∞).

Alternativamente, podemos ver que si y > x, entonces 1/y < 1/x. Esto nos dice
que ( 1

x
, x) ⊂ ( 1

y
, y). Como el integrando es positivo, tenemos entonces F (x) ≤ F (y).



Como F es creciente en (0, +∞), su imagen empieza en ĺımx→0+ F (x) y termina en
ĺımx→+∞ F (x). Usando el apartado (i):

ĺım
x→0+

F (x) =
∫ 0

+∞

e−t

t
dt = −

∫ +∞

0

e−t

t
dt = −∞.

ĺım
x→+∞

F (x) =
∫ +∞

0

e−t

t
dt = +∞.

Por tanto
F
(
(0, +∞)

)
= R.



Apellidos: Nombre:

Grupo: □ 111 Caterina Campagnolo □ 112 Sergio Cruz

Ejercicio 5 (2 puntos)

Sea f : R → R la función definida por

x 7−→


7 sen(|x|) − 6 si x ≥ −π

2 ,

kx2 si x < −π

2 ,

con k ∈ R.

(i) Justificar que f es continua en R \ {−π
2 }.

(ii) Encontrar el valor del parámetro k para que f sea continua en x = −π
2 .

Solución
(i) En el intervalo (−∞, −π

2 ) se tiene f(x) = kx2, que es un polinomio, luego es continua por
el carácter local de la continuidad. En el intervalo (−π

2 , +∞) se tiene f(x) = 7 sen(|x|) − 6,
y como x 7→ |x| es continua en R y sen es continua, por composición x 7→ sen(|x|) es
continua, y por tanto también 7 sen(|x|)−6, de nuevo por el carácter local de la continuidad.
Por tanto, f es continua en R \ {−π

2 }.

(ii) La continuidad en x = −π

2 exige que

ĺım
x→(−π/2)−

f(x) = ĺım
x→(−π/2)+

f(x) = f
(

−π

2

)
.

Por la derecha,

f
(

−π

2

)
= 7 sen

(∣∣∣∣−π

2

∣∣∣∣)− 6 = 7 sen
(

π

2

)
− 6 = 7 · 1 − 6 = 1.

Por la izquierda,

ĺım
x→(−π/2)−

f(x) = ĺım
x→(−π/2)−

kx2 = k
(

π

2

)2
= kπ2

4 .

Igualando,
kπ2

4 = 1 =⇒ k = 4
π2 .



Ejercicio 6 (5 puntos)

Se considera la sucesión {xn} definida mediante la siguiente ley de recurrencia:
x1 > 0,

x2 > x1,

xn+1 = 2xn − xn−1 para todo n ≥ 2.

y se define
yn = xn+1

xn

para todo n ≥ 1.

(i) Probar que {xn} es creciente y deducir que yn ≥ 1 para todo n ∈ N.

(ii) Comprobar que yn+1 = 2 − 1
yn

para todo n ∈ N y demostrar que {yn} es decreciente.

(iii) Justificar que {yn} es convergente y calcular su límite.

Solución.
(i) Lo hacemos por inducción sobre n ∈ N. El caso base x2 > x1 es parte de las hipótesis
del problema. Suponemos ahora que xn+1 > xn, y veamos que entonces xn+2 > xn+1:

xn+2 − xn+1 = 2xn+1 − xn − xn+1 = xn+1 − xn > 0.

Como x1 > 0 y la sucesión es creciente, se tiene xn > 0 para todo n.

Ahora bien, para todo n ≥ 1,

yn = xn+1

xn

≥ 1 ⇐⇒ xn+1 ≥ xn,

lo cual es cierto por la monotonía ya probada. Luego yn ≥ 1 para todo n.

(ii) Usando las definiciones de yn y xn:

yn+1 = xn+2

xn+1
= 2xn+1 − xn

xn+1
= 2 − xn

xn+1
= 2 − 1

xn+1
xn

= 2 − 1
yn

,

para todo n ≥ 1.

Para la monotonía, recordamos que yn ≥ 1, luego

yn+1 − yn =
(

2 − 1
yn

)
− yn = 2yn − 1 − y2

n

yn

= −(yn − 1)2

yn

≤ 0.

Por tanto yn+1 ≤ yn para todo n, es decir, {yn} es decreciente.

(iii) Justificar que {yn} es convergente y calcular su límite.

De (i) y (ii), {yn} es decreciente y está acotada inferiormente por 1; luego es convergente.
Sea

ℓ = ĺım
n→∞

yn.

Pasando al límite en la fórmula anterior obtenemos

ℓ = 2 − 1
ℓ

⇐⇒ ℓ2 − 2ℓ + 1 = 0 ⇐⇒ (ℓ − 1)2 = 0 ⇐⇒ ℓ = 1.


