CALcULO I: GRADO EN ING. INFORMATICA 2025/26

Este examen consta de dos partes:

El segundo examen parcial consta de 4 ejercicios y se entregard transcurridas
2 horas. La puntuacion mdxima de esta parte es de 12 puntos. Esta parte es obliga-
toria para todos los alumnos.

La segunda parte del examen, junto con el sequndo parcial, constituye el examen
final. La duracion mdxima de la prueba conjunta es de 8 horas. El examen final consta
en total de 6 ejercictos y tiene una puntuacion mdzima de 19 puntos. Esta parte es
obligatoria para los alumnos cuya nota de evaluacion continua de la primera
parte del curso sea inferior a 4.

Las respuestas deben redactarse en el espacio habilitado para ello.

En Madrid, a 16 de enero de 2026.



Apellidos: Nombre:

Grupo: 111 Caterina Campagnolo J112 Sergio Cruz

Ejercicio 1 (2 puntos)

Calcular el nimero exacto de soluciones de la ecuacién 3logx = x para x > 0.

Solucidn.

Consideramos
f(x) =3logz — x, x> 0.

Buscamos el niimero de ceros de f en (0,400). Derivando,

flay=2-1=221

i T

Luego f'(z) > 0si0 <2z <3y f(xr) <0siz >3, de modo que f es estrictamente
creciente en (0, 3), estrictamente decreciente en (3,+00), y tiene un maximo global en
x = 3. Por tanto, f es inyectiva en (0,3) y en (3,400) y solo puede haber, como méximo,
una solucién en cada intervalo.

Ademas,

f(3) =3log3—3>0, lim f(z) = —o0, lim f(z) = —o0.

z—0t T—+00

(En este paso, es suficiente con encontrar un valor de f negativo a la izquierda de = = 3
y otro a la derecha.) Por continuidad, como f sube desde —oo hasta un valor positivo y
luego baja hasta —oo, la ecuacién f(x) = 0 tiene exactamente dos soluciones en (0, +00).

1Y

Alternativamente, puede usarse el teorema de Rolle para justificar que no hay més
soluciones, ya que si hubiera otra existiria un punto ¢ € (0,+00), ¢ # 3, con f'(c¢) =0, lo
cual es imposible porque la derivada solo se anula en 3.



Ejercicio 2
Sea f: R — R dada por

f(z) =xsenz —sen’z, VR,

(i) Calcular el polinomio de Taylor de orden 4 de f centrado en a = 0.

(ii) Evaluar el limite
@)
im

z—0 1’4

Recuerda: 2sen z cosz = sen 2x.

Solucién

Sea f: R — R dada por f(z) = zsenx — sen® .

(3 puntos)

Para calcular el polinommio de Taylor de orden 4 de f no necesitamos siquiera hacer las

derivadas de f. Sabemos que

sen(0) =0, sen’(0) =cos(0) =1, sen”(0) = —sen(0) =0, sen”(0) = —cos(0) = —1.

Por tanto,
3
Ts[sen, 0](x) = = — R
Entonces ) \
Ty[zsenz, 0] = 2° — R Tyfsen®, 0] = 2% — %
Por tanto,
4 |
Tlf,0)(w) =2* = & =2’ + 5 = =

Ahora, usando la férmula infinitesimal del resto:
%x‘* + R4 (l‘) 1

 flx) _
i 7 < iy S

Alternativamente, puede usarse la regla de L’Hopital 4 veces para llegar a la misma

conclusion.



Ejercicio 3 (3 puntos)

Calcular el drea geométrica (sin signo) encerrada entre las gréficas de las funciones
f,g: (0,e) — R dadas por

f(z) =loga, g(x)=—logz, Ve (0,e)

Solucion.
Los puntos de corte de f y g satisfacen logx = —log x, es decir 2logx = 0, luego x = 1.

En (0,1) se tiene logx < 0, por tanto g(x) = —logx estd por encima de f(z) = logz. En
(1,e) ocurre lo contrario: logz > 0 y entonces f estd por encima de g.

Asi, el drea geométrica pedida es

A= / dx+/ dx—/ol(—Qlogx) dm+/16(210gx) dz.

Integrando por partes vemos que xlogx — x es una primitiva de logx, lo que nos da

1
/ logx dxr = [xlogm—x};:(—l)— lim (xlogm—x) -1,
0

z—0t

donde hemos usado la escala de infinitos (o la regla de L’Hopital) para ver que

—logx

lim zlogx = lim =0.

20+ z5too g

Ademas,
/ logx do = [xlogx—x]i =(e-1—e)—(0—1)=1.
1

Por tanto,
1 e
A= —2/ log x dx + 2/ logrdr = —2(—1) +2(1) = 4.
0 1




Ejercicio 4 (4 puntos)

Sea F': (0,+00) — R la funcién dada por

(i)

(i)
(iif)

o
F(x) = / e—dt, Vo > 0.
1/z t

Demostrar que, de las siguientes integrales impropias, la primera diverge a +00 y la

segunda es convergente:
—t t

1 +00 p—
/ € _at, / € _ar.
o t 1 t

Calcular F".

Demostrar que F' es creciente en (0, 4+00) y calcular su imagen.

Solucidon.

(1)

(iii)

Para t € (0,1] se cumple e™* > 7!, luego
Let 1 ldt
/ —dt > f/ — = +00.
o ¢ eJo t

1
t

+oo e_t +oo
/ —dt < / e_tdt:[—e_t
1 t 1

. —t . . .
Alternativamente, como ¢ — <~ es decreciente, podemos usar el criterio de la
integral para series y considerar la serie

>y

Por otro lado, para t > 1 se tiene ; < 1, asi que
o0 1

= — < +00.
1 e

n>1 1
Aplicando el criterio del cociente:
el n 1
— = =<1,
n+1l e™m e

luego la integral converge.

La funcién t — % es continua en (0,+00), luego admite una primitiva G. Por la
regla de Barrow tenemos F(z) = G(z) — G(1/x) y podemos derivar usando la regla
de la cadena.

() = 1z

e~ 6—1/90 1 e~ e—l/x e 1+ e—l/m
(4 -
X x x x

Para todo x > 0, F'(z) = w > 0, luego F' es estrictamente creciente en
(0,400).

Alternativamente, podemos ver que si y > x, entonces 1/y < 1/x. Esto nos dice

que (1,2) C (i, y). Como el integrando es positivo, tenemos entonces F(x) < F(y).



Como F es creciente en (0,400), su imagen empieza en lim, ,o+ F(z) y termina en
lim,_,, F(z). Usando el apartado (7):

0 e—t +00 €_t
lim F(z) :/ —dt:—/ € dt = —oc.
z—0+F +oo T 0 t

+o0o e_t
lim F(x):/ “dt = +o.
0

T—+00

Por tanto
F((0,+00)) = R.



Apellidos: Nombre:

Grupo: 111 Caterina Campagnolo J112 Sergio Cruz

Ejercicio 5 (2 puntos)
Sea f: R — R la funcién definida por

7sen(|z|) —6 siz > —g,
o T
ka? iz < ——
x si @ 5
con k € R.

(i) Justificar que f es continua en R\ {—7}.

(ii) Encontrar el valor del parametro k para que f sea continua en v = —7.

Solucion

(i) En el intervalo (—oo, —%) se tiene f(z) = kx*, que es un polinomio, luego es continua por
el cardcter local de la continuidad. En el intervalo (-7, 4+00) se tiene f(x) = 7sen(|z|) — 6,
y como x +— |x| es continua en R y sen es continua, por composicién x +— sen(|x|) es
continua, y por tanto también 7 sen(|z|) —6, de nuevo por el cardcter local de la continuidad.
Por tanto, f es continua en R\ {—7}.

(ii) La continuidad en x = —g exige que

1m
x—(—m/2)~ z—(—7/2)*t

Por la derecha,

f<_72T) = 7sen(‘—g‘> — 6= 7sen(72r) —6=7-1-6=1.

Por la izquierda,

2 kﬂ'Q
' Y w:k(”) _
x—)(lilgl/%* /() m—>(15¥1/2)7 * 2 4
Igualando,
2
4
M = k=l



Ejercicio 6 (5 puntos)

Se considera la sucesién {x,} definida mediante la siguiente ley de recurrencia:

xr, > O,
Ty > T,
Tpa1 = 2Ty — Tp_q para todo n > 2.
y se define
x
Yy = para todo n > 1.

Tn
(i) Probar que {z,} es creciente y deducir que y, > 1 para todo n € N.

1
ii) Comprobar que ¥y, = 2 — — para todo n € N y demostrar que {y, } es decreciente.
Yn+

(iii) Justificar que {y,} es convergente y calcular su limite.

Solucidon.

(i) Lo hacemos por induccién sobre n € N. El caso base xo > x; es parte de las hipdtesis
del problema. Suponemos ahora que x,;1 > x,, y veamos que entonces o > Tpi1:

Tnt2 — Tpt1 = 2xn—l—l —Tp — Tptl = Tptl — Tn > 0.
Como z; > 0 y la sucesion es creciente, se tiene x,, > 0 para todo n.

Ahora bien, para todon > 1,

. Tn+1
Yn =
Tn

Z 1 < Tn+1 Z L,
lo cual es cierto por la monotonia ya probada. Luego y, > 1 para todo n.

(ii) Usando las definiciones de y,, y p:

_$n+2 _2xn+1_xn_2 Ty —9 1 —9 1
Ynt1 = = =2- =2- g =2,
Tn+41 Tn+41 Tn+41 Tn Un

para todo n > 1.

Para la monotonia, recordamos que y, > 1, luego

1 W — 1 — 12 Y — 1)2
ynﬂ_yn:(z_)_yn:yy:_()g'
Yn Yn Yn

Por tanto y,4+1 < y, para todo n, es decir, {y,} es decreciente.

(iii) Justificar que {y,} es convergente y calcular su limite.

De (i) y (ii), {yn} es decreciente y estd acotada inferiormente por 1; luego es convergente.
Sea

€=l vn.
Pasando al limite en la férmula anterior obtenemos

6:2—2 = LP-22+1=0 = ({-11=0 <= (=1



