
Cálculo I: Grado en Ing. Informática – Examen Parcial I

Apellidos: Nombre:

Este examen consta de 4 ejercicios y tiene una duración de 2 horas.
La puntuación máxima son 13 puntos.
No se permite usar la regla de L’Hôpital en ninguno de los ejercicios.
Los criterios generales de corrección aparecen señalados en rojo. La puntuación final de cada
apartado puede variar dependiendo del rigor y la claridad de los razonamientos.

Ejercicio 1 (2 puntos)

Demostrar que la ecuación en x

cos(x) + cos(2x) = 3
2 − x2

tiene una solución en
[
−π

2 , π
2

]
.

Solución: La ecuación
cos(x) + cos(2x) = 3

2 − x2

es equivalente a
cos(x) + cos(2x) − 3

2 + x2 = 0.

Definamos una función f :
[
−π

2 , π
2

]
→ R, f(x) = cos(x) + cos(2x) − 3

2 + x2. La función coseno
y las funciones polinomiales son continuas, así que f , al ser composición y suma de funciones
continuas, es continua. (0,5 puntos).

Nuestra intención es aplicar el teorema de Bolzano a la función f en un intervalo [a, b] ⊂ [−π
2 , π

2 ]
tal que f(a)f(b) < 0. Podemos observar que no basta con tomar a = π

2 y b = −π
2 , ya que

f

(
−π

2

)
= f

(
π

2

)
= π2 − 10

4 < 0

(de hecho, f es una función par, así que f(x) = f(−x)). Buscamos otro punto del intervalo con
imagen positiva, y vemos que

f(0) = 1 + 1 − 3
2 + 0 = 1

2 > 0.

(0,5 puntos)

Entonces podemos aplicar el teorema de Bolzano a la función f en el intervalo
[
0, π

2
]

(o bien en
[−π

2 , 0]): como f es continua en dicho intervalo y toma valores de signos distintos en los extremos,
existe c ∈

(
0, π

2
)

tal que f(c) = 0.

Entonces en particular la ecuación original tiene una solución en el intervalo
[
−π

2 , π
2

]
. (1 punto)
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Ejercicio 2 (3 puntos)

Estudiar en qué puntos es continua la función f : (−1, +∞) → R dada por

f(x) =


|x − 3|

x2 − 2x − 3 si x ̸= 3,

1
4 si x = 3.

Solución: Como x2 − 2x − 3 = (x − 3)(x + 1), se sigue que f es continua en (−1, 3) ∪ (3, +∞)
por el carácter local de la continuidad, ya que en dichos intervalos abiertos la función es un
cociente de funciones continuas cuyo denominador nunca se anula. Nótese que la función f no
está definida en (−∞, 1], así que es un error estudiar la continuidad en dichos puntos.

(1 punto)

El punto x = 3 es interior a (−1, +∞), así que podemos estudiar la continuidad a través de los
límites laterales. Si x > 3, tenemos que |x − 3| = x − 3, y si x < 3, entonces será |x − 3| = 3 − x.
Por tanto:

ĺım
x→3+

f(x) = ĺım
x→3+

x − 3
(x + 1)(x − 3) = ĺım

x→3+

1
x + 1 = 1

4 ,

(1 punto)
ĺım

x→3−
f(x) = ĺım

x→3−

3 − x

(x + 1)(x − 3) = ĺım
x→3−

−1
x + 1 = − 1

4 .

Por tanto, f no es continua en x = 3. (1 punto)

Ejercicio 3 (4 puntos)

Estudiar la convergencia y la convergencia absoluta de las siguientes series:

(a)
∑
n≥1

(−1)nn

n2 + 1 , (b)
∑
n≥1

nn

3n n! .

Solución:

(a) Empezamos estudiando la convergencia absoluta, para la cual consideramos la serie de
términos no negativos ∑

n≥1

∣∣∣∣(−1)nn

n2 + 1

∣∣∣∣ =
∑
n≥1

n

n2 + 1 .

Observamos que, para n suficientemente grande, n
n2+1 ∼ 1

n , así que aplicamos comparación por
paso al límite con la serie armónica:

ĺım
n→∞

n

n2 + 1
1
n

= ĺım
n→∞

n2

n2 + 1 = 1 > 0,

luego
∑

n≥1
n

n2+1 no converge porque
∑

n≥1
1
n no es convergente. Por consiguiente, la serie original

no es absolutamente convergente. (1 punto)

Estudiamos ahora la convergencia, viendo que se cumplen las hipótesis del criterio de Leibniz,
esto es, an = n

1 + n2 ↓ 0. En efecto,

an > an+1 ⇐⇒ n

1 + n2 >
n + 1

1 + (n + 1)2 ⇐⇒ n3 + 2n2 + 2n ≥ n3 + n2 + n + 1 ⇐⇒ n2 + n ≥ 1,
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y además ĺımn→∞ an = 0 de forma clara. Por el criterio de Leibniz, la serie
∑

n≥1
(−1)n n

n2+1 converge.
(1 punto) Por tanto, se trata de una serie condicionalmente convergente.

(b) Consideramos ahora ∑
n≥1

n n

3 n n! .

Los términos de esta serie son todos positivos, por lo que convergencia y convergencia absoluta
son equivalentes (0,5 puntos). Aplicamos el criterio del cociente:

an+1
an

= (n + 1)n+1

3 n+1(n + 1)! ·
3 nn!
n n

= (n + 1)n

3nn
= 1

3

(
1 + 1

n

)n

(0,5 puntos) =⇒ ĺım
n→∞

an+1
an

= e

3 < 1.

Luego la serie converge en ambos sentidos (1 punto).

Alternativamente, si se opta por aplicar el criterio de la raíz, es posible que nos encontremos
con

n
√

an = 1
3

n
n
√

n!
.

La aplicación del criterio de la raíz para sucesiones nos dice que n
√

n! → +∞, lo cual no es
suficiente para determinar el comportamiento de n

√
an. La forma correcta de aplicar el criterio de

la raíz para series en este ejemplo es considerar la sucesión

1
3

n

√
nn

n! .

Haciendo un razonamiento similar al anterior, el criterio de la raíz para sucesiones en este caso
nos daría que dicha sucesión converge a e/3 < 1, y por tanto la serie es convergente.

Ejercicio 4 (4 puntos)

Sea la sucesión {an} definida por

a1 = 2, an+1 = 1 + an − 1
(n + 1)2 , n ∈ N.

(1) Demostrar que {an} es una sucesión decreciente y minorada por 1.

(2) Concluir que {an} es convergente y calcular su límite.

Solución:

(1) Primero demostramos por inducción que an ≥ 1 para todo n ∈ N:

Base de inducción: a1 = 2 ≥ 1.

Hipótesis de inducción: Para cierto n ∈ N, an ≥ 1.

Paso de inducción: an+1 = 1 + an−1
(n+1)2 ≥ 1 + 1−1

(n+1)2 = 1 + 0 = 1, ya que, por hipótesis de
inducción, an ≥ 1.

(1 punto)

En segundo lugar, demostramos por inducción que {an} es decreciente, es decir: an+1 ≤ an

para todo n ∈ N.

Base de inducción: a1 = 2, y a2 = 1 + a1−1
(1+1)2 = 1 + 1

4 = 5
4 ≤ 2 = a1.

Hipótesis de inducción: Para cierto n ∈ N, an ≤ an−1.
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Paso de inducción: Averiguamos que an+1 ≤ an:

an+1 − an = 1 + an − 1
(n + 1)2 − an = (n + 1)2 + an − 1 − an(n + 1)2

(n + 1)2

= (n + 1)2(1 − an) − (1 − an)
(n + 1)2 = (1 − an)((n + 1)2 − 1)

(n + 1)2

= (1 − an)(n2 + 2n)
(n + 1)2 ≤ 0,

ya que, por la parte anterior, an ≥ 1, y n2+2n
(n+1)2 ≥ 0 para todo n ∈ N.

(1 punto)

Alternativamente, si ya se ha probado que an ≥ 1 para todo n, puede verse directamente
que

an+1 = 1 + an − 1
(n + 1)2 ≤ 1 + an − 1 = an,

sin necesidad de hacer inducción, donde simplemente hemos usado que 1
(n+1)2 < 1

4 < 1 para
todo n ∈ N, y que an − 1 ≥ 0.

(2) Aplicamos el teorema de convergencia monótona: una sucesión monótona y acotada converge.
Más precisamente, si es decreciente y está minorada, converge a su ínfimo, y si es creciente y
está mayorada, converge a su supremo. Para nuestra sucesión se trata del primer caso: la
sucesión es decreciente y acotada inferiormente. (1 punto)

Escribamos L para el límite de {an}. Sea {an+1} la subsucesión que empieza con a2. Al ser
subsucesión de la sucesión convergente {an}, la sucesión {an+1} también es convergente y
converge al mismo límite L. Así que tomando límite cuando n → +∞, tenemos:

L = ĺım
n→+∞

an+1 = ĺım
n→+∞

1 + an − 1
(n + 1)2 = 1 + ĺım

n→+∞

an − 1
(n + 1)2 = 1 + 0 = 1,

ya que an ≤ a1 = 2 está acotada, y por tanto ĺımn→+∞
an−1

(n+1)2 = 0. (1 punto)

Deducimos que 1 no solo era cota inferior para {an}, sino que era su ínfimo.
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