Ejercicio 1. (2 puntos) El astroide es la curva plana I" parametrizada por +y : [0, 27] —
T, con y(t) = (cos®t,sin® t) para todo t € [0, 27]. Calcular la longitud de T

Indicacién: sin®t cos® t = 1sin®(2t). Nétense las simetrias de T,
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Ejercicio 2. Sea F' : R? — R? el campo vectorial dado por
F(z,y) = (6zy — x + ycos(zy), 32° +  cos(zy)) .

(2 puntos) Demostrar que F es un campo conservativo y encontrar un potencial.
(1 punto) Sean 7 el arco del astroide con 0 < t < m, y o : [0,1] — R? el segmento
o(t) = (1 —2t,0). Justificar por qué [ F.dl = [ F.dL.
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Ejercicio 3. (2 puntos) Esbozar el conjunto Q = {(z,y,2) € R®: 22 <a?+y* < z}y
calcular su volumen.
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Ejercicio 4. (3 puntos) Sean A = {(z,y,2) € R* : z > /a2 + 4%, 0 < 2 < 1}, ¢
Y = OA. Se considera el campo vectorial G : R* — R? dado por

G(z,y,2) = (-, —y, 22).

Comprobar la veracidad del teorema de la divergencia para 2, ¥ y G, justificando cuando
sea necesario la orientacion escogida.
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