Ejercicio 1. El astroide es la curva plana I’ parametrizada por ~ : [0,27] — T, con
7(t) = (cos®t,sin®t) para todo t € [0, 2r].
(2 puntos) Calcular la ecuacion de la recta tangente a I en (: ‘\{ )
(1 punto) Razonar si existe la recta tangente a I" en (1, 0).
(2 puntos) Usar el teorema de Green con I' y el campo F(x,y) = (52, 5) para deter-
minar el drea de su region interior.
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Ejercicio 2. (2 puntos) Esbozar el conjunto

Q={(z,y,2) €R*: Va2 + 2 <2 <1-2(a* + %)}

y calcular su volumen.
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Ejercicio 3. (3 puntos) Sean A = {(z,y,2) € R* : 2 > 2? + 42, 0 < 2 < 1}, ¢
¥ = OA. Se considera el campo vectorial H : R* — R* dado por

H(z,y,z) = (0,0,2z).

Sabiendo que vol(A) = 7, comprobar la veracidad del teorema de la divergencia para A,
Yy H, justificando cuando sea necesario la orientacién escogida.
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