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Ejercicio 1. Sean A = {(z,y) e R? : 2y > -1}y f : A — R el campo escalar dado por

fa) = Yo ) € AV {0.0)
£(0,0) = 0.

(1.5 puntos) Argumentar usando funciones continuas que A es un cerrado de R
(2 puntos) Demostrar que f no es continua en (0,0).
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Ejercicio 2. Sea g : R* — R dada por

g(x,y) = zy + Va? + 9%
(2 puntos) Estudiar la diferenciabilidad de g en R
(2 puntos) Clasificar los puntos criticos de g.
Sugerencia: Nétese que §(x,y) = g(y,v) V(z,y) € R2,
(0.5 puntos) Demostrar que g tiene un minimo relativo en (0,0).
Sugerencia: Hacer un cambio a coordenadas polares.
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Ejercicio 3. Sean h : R? — R un campo diferenciable en R? tal que h(0,0) = 3y
Vh(0,0) = (—1,1), y G : R? — R? el campo vectorial dado por
G(z,y) = (.7;y —x,e"Y — 1) .

(2 puntos) Calcular la ecuacién del plano tangente a la grdfica de h o G en (1,1, 3).
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