Ejercicio 1. Sea f : R* — R la funcién dada por
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0 si (z,y)=(0,0).

(1 punto) Estudiar la continuidad de f en (0,0).
(1 punto) Estudiar la diferenciabilidad de f en (0,0).
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Ejercicio 2. Sean f : R*> — R el campo escalar dado por f(z,y) = 2* — 3z + 2y, y
F : R? — R* un campo vectorial diferenciable tal que F(0,0) = (—1,2) y

2 -1
oron-(2 ),

(1 punto) Encontrar y clasificar todos los puntos criticos de f en R
(1 punto) Calcular el polinomio de Taylor de orden 2 de f centrado en (1,0).
(1 punto) Determinar un vector normal a la gréfica de f(F) en el punto (0,0, 0).

Poc Como Jgécd) Caﬂwo-wwab

6x A
o) = (25-3 +y, A4 (CTE
Ja(l()\ (x 4—8 x\ gx\a (4 O)
xz_ = - =0 = = 3
Q) Vd(w&\z(o‘o\ 4:‘3{ Sx-v4y =0 ) >4 > g
X=0 UV\'\CQ puwjm cnrk-ico-. (013\),
VZO’(OS\: 0 4 Lo QG‘LOV&LOI‘ab San Q&s valay  de
1 0 dok (Vy (O.Q—c\xza\).
- 4
I

- Y RN Rafces d=1, d=-{. Es wm PUVV\-o iu%?ﬂo\.

€ -1
b) E(J( (40) = 0{(4.0\ +<vju\o\, LD + Zl (¢~ g\ ﬁ’[ 1,0) ( y ) =
6 -4
2 4 (0, 4), U, + 5 (et g) ( ) "M J ) =
-2 vy« E' (G(K—l\2+ 25(“\\ = -2 +a +23(x0 + BLH\
C,\ Loﬁ Ab&. Po‘e\\oz.k \)ec:Lom vwrmﬁu S i(ggi—ﬁ(o‘o\l%é(;ﬂ(o,o\,%).
Caﬂmﬂams VO{(F\ 00) vtands o wzaﬂa- & L

CO.AQM'-

V%(F\ (0.0\: Vd(F(0.0\\-DF(_O‘o\: VJ("LZ\ (; —A1 ) :



= (2 —(}

Ejercicio 3. Se considera el campo vectorial F' : R? — R? definido como
F(z,y) = (6x + ye™, 6y + xe™)
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(1 punto) Demostrar que F es un campo conservativo y calcular un potencial.

(1 punto) Evaluar [ F.dl, siendo T el arco que va desde (0,1) hasta (0, —1) de la
circunferencia unidad de R* centrada en (0, 0) recorrida en sentido horario.
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Ejercicio 4. Sea Q) el abierto acotado de R® cuya superficie frontera viene dada como I
union de las grificas z = 2® + y* y z = 2 — x> — y?, ambas con 2® + y* < 1. Se considera
el campo vectorial I : R® — R3 dado por

F(z,y,2) = (x, y, 2).

(1 punto) Probar mediante el cdlculo de una integral triple que vol(Q) = .

(2 puntos) Comprobar la veracidad del teorema de la divergencia para Q y F, justifi-
cando las orientaciones escogidas.
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